Exploring Structure-Wise Uncertainty for 3D Medical Image Segmentation
- URL: http://arxiv.org/abs/2211.00303v1
- Date: Tue, 1 Nov 2022 06:53:00 GMT
- Title: Exploring Structure-Wise Uncertainty for 3D Medical Image Segmentation
- Authors: Anton Vasiliuk, Daria Frolova, Mikhail Belyaev, Boris Shirokikh
- Abstract summary: Voxel-wise uncertainty is a useful visual marker for human experts.
We propose a framework to measure the structure-wise uncertainty and evaluate the impact of OOD data on the model performance.
- Score: 0.06117371161379209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When applying a Deep Learning model to medical images, it is crucial to
estimate the model uncertainty. Voxel-wise uncertainty is a useful visual
marker for human experts and could be used to improve the model's voxel-wise
output, such as segmentation. Moreover, uncertainty provides a solid foundation
for out-of-distribution (OOD) detection, improving the model performance on the
image-wise level. However, one of the frequent tasks in medical imaging is the
segmentation of distinct, local structures such as tumors or lesions. Here, the
structure-wise uncertainty allows more precise operations than image-wise and
more semantic-aware than voxel-wise. The way to produce uncertainty for
individual structures remains poorly explored. We propose a framework to
measure the structure-wise uncertainty and evaluate the impact of OOD data on
the model performance. Thus, we identify the best UE method to improve the
segmentation quality. The proposed framework is tested on three datasets with
the tumor segmentation task: LIDC-IDRI, LiTS, and a private one with multiple
brain metastases cases.
Related papers
- Validation of musculoskeletal segmentation model with uncertainty estimation for bone and muscle assessment in hip-to-knee clinical CT images [0.795142520168573]
This study aimed to validate an improved deep learning model for volumetric MSK segmentation of the hip and thigh.
The model has shown an overall improvement with respect to all segmentation accuracy and structure volume/density evaluation metrics.
arXiv Detail & Related papers (2024-09-04T14:49:35Z) - Counterfactuals and Uncertainty-Based Explainable Paradigm for the Automated Detection and Segmentation of Renal Cysts in Computed Tomography Images: A Multi-Center Study [1.83277723272657]
Routine computed tomography (CT) scans often detect a wide range of renal cysts, some of which may be malignant.
Current segmentation methods, however, do not offer sufficient interpretability at the feature and pixel levels.
We developed an interpretable segmentation framework and validated it on a multi-centric dataset.
arXiv Detail & Related papers (2024-08-07T14:14:05Z) - Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images [1.2179682412409507]
We propose SPI-CorrNet, a unified model that predicts 3D correspondences from sparse imaging data.
Experiments on the LGE MRI left atrium dataset and Abdomen CT-1K liver datasets demonstrate that our technique enhances the accuracy and robustness of sparse image-driven SSM.
arXiv Detail & Related papers (2024-07-02T03:56:20Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
This paper introduces a new Bayesian deep learning framework for uncertainty quantification in segmentation neural networks.
We evaluate the proposed framework on medical image segmentation data from Magnetic Resonances Imaging and Computed Tomography scans.
Our experiments on multiple benchmark datasets demonstrate that the proposed framework is more robust to noise and adversarial attacks as compared to state-of-the-art segmentation models.
arXiv Detail & Related papers (2021-11-10T22:46:05Z) - Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical
Image Segmentation [92.9634065964963]
We present a new semi-supervised segmentation model, namely, conservative-radical network (CoraNet) based on our uncertainty estimation and separate self-training strategy.
Compared with the current state of the art, our CoraNet has demonstrated superior performance.
arXiv Detail & Related papers (2021-10-17T08:49:33Z) - A Multi-Task Cross-Task Learning Architecture for Ad-hoc Uncertainty
Estimation in 3D Cardiac MRI Image Segmentation [0.0]
We present a Multi-task Cross-task learning consistency approach to enforce the correlation between the pixel-level (segmentation) and the geometric-level (distance map) tasks.
Our study further showcases the potential of our model to flag low-quality segmentation from a given model.
arXiv Detail & Related papers (2021-09-16T03:53:24Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.