Entity Matching by Pool-based Active Learning
- URL: http://arxiv.org/abs/2211.00311v1
- Date: Tue, 1 Nov 2022 07:31:43 GMT
- Title: Entity Matching by Pool-based Active Learning
- Authors: Youfang Han, Chunping Li
- Abstract summary: In this paper, we present an active learning method ALMatcher for the entity matching tasks.
This method needs to manually label only a small number of valuable samples, and use these samples to build a model with high quality.
The proposed method has been validated on seven data sets in different fields.
- Score: 2.690502103971799
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of entity matching is to find the corresponding records representing
the same real-world entity from different data sources. At present, in the
mainstream methods, rule-based entity matching methods need tremendous domain
knowledge. The machine-learning based or deep-learning based entity matching
methods need a large number of labeled samples to build the model, which is
difficult to achieve in some applications. In addition, learning-based methods
are easy to over-fitting, so the quality requirements of training samples are
very high. In this paper, we present an active learning method ALMatcher for
the entity matching tasks. This method needs to manually label only a small
number of valuable samples, and use these samples to build a model with high
quality. This paper proposes a hybrid uncertainty as query strategy to find
those valuable samples for labeling, which can minimize the number of labeled
training samples meanwhile meet the task requirements. The proposed method has
been validated on seven data sets in different fields. The experiment shows
that ALMatcher uses only a small number of labeled samples and achieves better
results compared to existing approaches.
Related papers
- Integrated Image-Text Based on Semi-supervised Learning for Small Sample Instance Segmentation [1.3157419797035321]
The article proposes a novel small sample instance segmentation solution from the perspective of maximizing the utilization of existing information.
First, it helps the model fully utilize unlabeled data by learning to generate pseudo labels, increasing the number of available samples.
Second, by integrating the features of text and image, more accurate classification results can be obtained.
arXiv Detail & Related papers (2024-10-21T14:44:08Z) - Pre-Trained Vision-Language Models as Partial Annotators [40.89255396643592]
Pre-trained vision-language models learn massive data to model unified representations of images and natural languages.
In this paper, we investigate a novel "pre-trained annotating - weakly-supervised learning" paradigm for pre-trained model application and experiment on image classification tasks.
arXiv Detail & Related papers (2024-05-23T17:17:27Z) - Deep Active Learning with Contrastive Learning Under Realistic Data Pool
Assumptions [2.578242050187029]
Active learning aims to identify the most informative data from an unlabeled data pool that enables a model to reach the desired accuracy rapidly.
Most existing active learning methods have been evaluated in an ideal setting where only samples relevant to the target task exist in an unlabeled data pool.
We introduce new active learning benchmarks that include ambiguous, task-irrelevant out-of-distribution as well as in-distribution samples.
arXiv Detail & Related papers (2023-03-25T10:46:10Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
Active learning is a research area that addresses the issues of expensive labeling by selecting the most important samples for labeling.
We introduce a new diversity-based initial dataset selection algorithm to select the most informative set of samples for initial labeling in the active learning setting.
Also, we propose a novel active learning query strategy, which uses diversity-based sampling on consistency-based embeddings.
arXiv Detail & Related papers (2022-07-25T16:11:55Z) - Towards General and Efficient Active Learning [20.888364610175987]
Active learning aims to select the most informative samples to exploit limited annotation budgets.
We propose a novel general and efficient active learning (GEAL) method in this paper.
Our method can conduct data selection processes on different datasets with a single-pass inference of the same model.
arXiv Detail & Related papers (2021-12-15T08:35:28Z) - Active Learning in Incomplete Label Multiple Instance Multiple Label
Learning [17.5720245903743]
We propose a novel bag-class pair based approach for active learning in the MIML setting.
Our approach is based on a discriminative graphical model with efficient and exact inference.
arXiv Detail & Related papers (2021-07-22T17:01:28Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
We propose methods to facilitate identification of training data artifacts.
We show that this proposed training-feature attribution approach can be used to uncover artifacts in training data.
We execute a small user study to evaluate whether these methods are useful to NLP researchers in practice.
arXiv Detail & Related papers (2021-07-01T09:26:13Z) - Visual Transformer for Task-aware Active Learning [49.903358393660724]
We present a novel pipeline for pool-based Active Learning.
Our method exploits accessible unlabelled examples during training to estimate their co-relation with the labelled examples.
Visual Transformer models non-local visual concept dependency between labelled and unlabelled examples.
arXiv Detail & Related papers (2021-06-07T17:13:59Z) - Cooperative Bi-path Metric for Few-shot Learning [50.98891758059389]
We make two contributions to investigate the few-shot classification problem.
We report a simple and effective baseline trained on base classes in the way of traditional supervised learning.
We propose a cooperative bi-path metric for classification, which leverages the correlations between base classes and novel classes to further improve the accuracy.
arXiv Detail & Related papers (2020-08-10T11:28:52Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
Key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time.
We propose an adaptive task sampling method to improve the generalization performance.
arXiv Detail & Related papers (2020-07-17T03:15:53Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.