論文の概要: Time-aware Random Walk Diffusion to Improve Dynamic Graph Learning
- arxiv url: http://arxiv.org/abs/2211.01214v2
- Date: Thu, 3 Nov 2022 06:34:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 11:58:51.450746
- Title: Time-aware Random Walk Diffusion to Improve Dynamic Graph Learning
- Title(参考訳): 動的グラフ学習を改善するための時間認識ランダムウォーク拡散
- Authors: Jong-whi Lee, Jinhong Jung
- Abstract要約: TiaRaは、グラフスナップショットの離散時間シーケンスとして表される動的グラフを拡大するための、新しい拡散ベースの方法である。
TiaRaは与えられた動的グラフを効果的に拡張し、様々なグラフデータセットやタスクに対する動的GNNモデルを大幅に改善することを示す。
- 参考スコア(独自算出の注目度): 3.4012007729454816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How can we augment a dynamic graph for improving the performance of dynamic
graph neural networks? Graph augmentation has been widely utilized to boost the
learning performance of GNN-based models. However, most existing approaches
only enhance spatial structure within an input static graph by transforming the
graph, and do not consider dynamics caused by time such as temporal locality,
i.e., recent edges are more influential than earlier ones, which remains
challenging for dynamic graph augmentation. In this work, we propose TiaRa
(Time-aware Random Walk Diffusion), a novel diffusion-based method for
augmenting a dynamic graph represented as a discrete-time sequence of graph
snapshots. For this purpose, we first design a time-aware random walk proximity
so that a surfer can walk along the time dimension as well as edges, resulting
in spatially and temporally localized scores. We then derive our diffusion
matrices based on the time-aware random walk, and show they become enhanced
adjacency matrices that both spatial and temporal localities are augmented.
Throughout extensive experiments, we demonstrate that TiaRa effectively
augments a given dynamic graph, and leads to significant improvements in
dynamic GNN models for various graph datasets and tasks.
- Abstract(参考訳): 動的グラフニューラルネットワークの性能向上のために、動的グラフをどのように拡張するか?
グラフ拡張は、GNNベースのモデルの学習性能を高めるために広く利用されている。
しかし、既存のアプローチのほとんどは、グラフを変換して入力された静的グラフ内の空間構造を強化するだけであり、時間的局所性(例えば、最近のエッジは、以前のものよりも影響が強く、動的グラフの強化には依然として困難である。
本研究では,グラフスナップショットの離散時間列として表される動的グラフの拡散に基づく新しい手法であるTiaRa(Time-aware Random Walk Diffusion)を提案する。
この目的のために,まず,時間的,時間的,時間的,時間的,時間的局所的なスコアをサーファーが歩けるように,時間的なランダムウォーク近接を設計する。
次に,時間認識されたランダムウォークに基づいて拡散行列を導出し,空間的および時間的局所性が拡張された隣接行列となることを示す。
広範な実験を通じて、TiaRaは与えられた動的グラフを効果的に拡張し、様々なグラフデータセットやタスクに対する動的GNNモデルを大幅に改善することを示した。
関連論文リスト
- DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Decoupled Graph Neural Networks for Large Dynamic Graphs [14.635923016087503]
大規模動的グラフのための疎結合グラフニューラルネットワークを提案する。
このアルゴリズムは,両種類の動的グラフにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-05-14T23:00:10Z) - Scaling Up Dynamic Graph Representation Learning via Spiking Neural
Networks [23.01100055999135]
時間グラフの時間的および構造的パターンを効率的に捉えるために,スケーラブルなフレームワークであるSpikeNetを提案する。
RNNの代替として、SNNは明らかにグラフ力学をニューロンのスパイクトレインとしてモデル化している。
SpikeNetは、パラメータや計算オーバーヘッドが大幅に少ない大きな時間グラフに一般化する。
論文 参考訳(メタデータ) (2022-08-15T09:22:15Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
既存の作業は、動的グラフを変更のシーケンスとして見るだけである。
動的グラフを接合時間に付随する時間的エッジシーケンスとして定式化する。
頂点とエッジのタイムパン
組み込みにはタイムアウェアなTransformerが提案されている。
vertexの動的接続と学習へのToEs。
頂点表現
論文 参考訳(メタデータ) (2022-07-01T15:32:56Z) - Instant Graph Neural Networks for Dynamic Graphs [18.916632816065935]
Instant Graph Neural Network (InstantGNN) を提案する。
提案手法は,時間を要する反復計算を回避し,表現の即時更新と即時予測を可能にする。
本モデルでは,既存手法よりも高精度かつ高次精度で最先端の精度を実現する。
論文 参考訳(メタデータ) (2022-06-03T03:27:42Z) - Continuous Temporal Graph Networks for Event-Based Graph Data [41.786721257905555]
本研究では、時間グラフデータの連続的ダイナミクスを捉えるために、CTGN(Continuous Temporal Graph Networks)を提案する。
鍵となる考え方は、ニューラルネットワークの常微分方程式(ODE)を用いて、動的グラフ上のノード表現の連続的ダイナミクスを特徴づけることである。
帰納的タスクと帰納的タスクの両方の実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-05-31T16:17:02Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
本稿では,学習損失による時間依存性を選択的に表現し,計算の並列性を改善するための効率的な動的グラフ lEarning (EDGE) を提案する。
EDGEは、数百万のノードと数億の時間的イベントを持つ動的グラフにスケールでき、新しい最先端(SOTA)パフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2021-12-14T22:24:53Z) - Dynamic Graph Learning-Neural Network for Multivariate Time Series
Modeling [2.3022070933226217]
静的および動的グラフ学習ニューラルネットワーク(GL)という新しいフレームワークを提案する。
モデルはそれぞれ、データから静的グラフ行列と動的グラフ行列を取得し、長期パターンと短期パターンをモデル化する。
ほぼすべてのデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-12-06T08:19:15Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
我々は,ノード表現の推論を目的とした双曲空間における動的グラフ表現を初めて学習する。
本稿では,HVGNNと呼ばれる新しいハイパーボリック変動グラフネットワークを提案する。
特に,動力学をモデル化するために,理論的に接地した時間符号化手法に基づく時間gnn(tgnn)を導入する。
論文 参考訳(メタデータ) (2021-04-06T01:44:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。