論文の概要: UniDyG: A Unified and Effective Representation Learning Approach for Large Dynamic Graphs
- arxiv url: http://arxiv.org/abs/2502.16431v1
- Date: Sun, 23 Feb 2025 04:11:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:53:17.215897
- Title: UniDyG: A Unified and Effective Representation Learning Approach for Large Dynamic Graphs
- Title(参考訳): UniDyG:大規模動的グラフのための統一的で効果的な表現学習手法
- Authors: Yuanyuan Xu, Wenjie Zhang, Xuemin Lin, Ying Zhang,
- Abstract要約: 動的グラフに対する統一表現学習手法を提案する。
我々は、UniDyGが9つの動的グラフにまたがる16のベースラインに対して平均14.4%の改善を達成していることを示す。
- 参考スコア(独自算出の注目度): 25.66188469474215
- License:
- Abstract: Dynamic graphs are formulated in continuous-time or discrete-time dynamic graphs. They differ in temporal granularity: Continuous-Time Dynamic Graphs (CTDGs) exhibit rapid, localized changes, while Discrete-Time Dynamic Graphs (DTDGs) show gradual, global updates. This difference leads to isolated developments in representation learning for each type. To advance representation learning, recent research attempts to design a unified model capable of handling both CTDGs and DTDGs. However, it typically focuses on local dynamic propagation for temporal structure learning in the time domain, failing to accurately capture the structural evolution associated with each temporal granularity. In addition, existing works-whether specific or unified-often overlook the issue of temporal noise, compromising the model robustness and effectiveness. To better model both types of dynamic graphs, we propose UniDyG, a unified and effective representation learning approach, which scales to large dynamic graphs. We first propose a novel Fourier Graph Attention (FGAT) mechanism that can model local and global structural correlations based on recent neighbors and complex-number selective aggregation, while theoretically ensuring consistent representations of dynamic graphs over time. Based on approximation theory, we demonstrate that FGAT is well-suited to capture the underlying structures in CTDGs and DTDGs. We further enhance FGAT to resist temporal noise by designing an energy-gated unit, which adaptively filters out high-frequency noise according to the energy. Last, we leverage our FGAT mechanisms for temporal structure learning and employ the frequency-enhanced linear function for node-level dynamic updates, facilitating the generation of high-quality temporal embeddings. Extensive experiments show that our UniDyG achieves an average improvement of 14.4% over sixteen baselines across nine dynamic graphs.
- Abstract(参考訳): 動的グラフは連続時間または離散時間動的グラフで定式化される。
連続時間動的グラフ(CTDG)は急速かつ局所的な変化を示し、離散時間動的グラフ(DTDG)は徐々にグローバルな更新を示す。
この違いは、各タイプの表現学習における孤立した発展につながります。
近年,CTDGとDTDGの両方を扱える統一モデルの設計が試みられている。
しかし、一般的に時間領域における時間構造学習の局所的動的伝播に焦点を当てており、時間的粒度に関連する構造的進化を正確に捉えていない。
さらに、時間的ノイズの問題を見落とし、モデルの堅牢性と有効性を妥協する、特定の、あるいは統一された、既存の作業も見落としている。
両タイプの動的グラフをモデル化するために,大きな動的グラフにスケールする統一的で効果的な表現学習手法であるUniDyGを提案する。
まず, 局所的・大域的構造相関をモデル化し, 動的グラフの時間的一貫した表現を理論的に確保し, 局所的・大域的構造相関をモデル化するFGAT機構を提案する。
近似理論に基づき、FGATはCTDGやDTDGの基盤構造を捉えるのに適していることを示す。
我々はFGATをさらに強化し、そのエネルギーに応じて高周波ノイズを適応的に除去するエネルギーゲートユニットを設計する。
最後に、FGAT機構を時間構造学習に活用し、周波数強調線形関数をノードレベルの動的更新に利用し、高品質な時間的埋め込みを生成する。
大規模な実験により、我々のUniDyGは9つの動的グラフにまたがる16のベースライン平均14.4%の改善を達成した。
関連論文リスト
- DG-Mamba: Robust and Efficient Dynamic Graph Structure Learning with Selective State Space Models [16.435352947791923]
選択状態空間モデル(Mamba)を用いた動的グラフ構造学習フレームワークを提案する。
我々のフレームワークは、敵攻撃に対する最先端のベースラインよりも優れている。
論文 参考訳(メタデータ) (2024-12-11T07:32:38Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - State Space Models on Temporal Graphs: A First-Principles Study [30.531930200222423]
深層グラフ学習の研究は、動的挙動を示す実世界の複雑なシステムに応答して、静的グラフから時間グラフへ移行した。
RNNやTransformerのようなシーケンスモデルは、このような時間グラフをモデル化するための主要なバックボーンネットワークである。
時間グラフのダイナミクスをモデル化するためのグラフ状態空間モデルであるGraphSSMを開発した。
論文 参考訳(メタデータ) (2024-06-03T02:56:11Z) - Input Snapshots Fusion for Scalable Discrete-Time Dynamic Graph Neural Networks [27.616083395612595]
本稿では,Hawkesプロセスとグラフニューラルネットワークを組み合わせることで,動的グラフの時間的および構造的パターンを効果的に捉えるSFDyGを提案する。
複数のスナップショットを1つの時間グラフに融合することで、SFDyGはスナップショットの数から計算複雑性を分離し、効率的なフルバッチとミニバッチのトレーニングを可能にする。
論文 参考訳(メタデータ) (2024-05-11T10:05:55Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
本稿では,動的グラフ表現学習のための新しいフレームワークであるRecurrent Structure-Reinforced Graph Transformer (RSGT)を紹介する。
RSGTは、繰り返し学習パラダイムを通じて、グラフトポロジと進化力学の両方をコードする時間ノード表現をキャプチャする。
離散動的グラフ表現学習におけるRSGTの優れた性能を示し、動的リンク予測タスクにおける既存の手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-04-20T04:12:50Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Time-aware Random Walk Diffusion to Improve Dynamic Graph Learning [3.4012007729454816]
TiaRaは、グラフスナップショットの離散時間シーケンスとして表される動的グラフを拡大するための、新しい拡散ベースの方法である。
TiaRaは与えられた動的グラフを効果的に拡張し、様々なグラフデータセットやタスクに対する動的GNNモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2022-11-02T15:55:46Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
既存の作業は、動的グラフを変更のシーケンスとして見るだけである。
動的グラフを接合時間に付随する時間的エッジシーケンスとして定式化する。
頂点とエッジのタイムパン
組み込みにはタイムアウェアなTransformerが提案されている。
vertexの動的接続と学習へのToEs。
頂点表現
論文 参考訳(メタデータ) (2022-07-01T15:32:56Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。