論文の概要: QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning
- arxiv url: http://arxiv.org/abs/2211.01365v3
- Date: Sat, 4 May 2024 23:55:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 03:39:13.969191
- Title: QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning
- Title(参考訳): QuACK: Koopman演算子学習によるグラディエントベースの量子最適化の高速化
- Authors: Di Luo, Jiayu Shen, Rumen Dangovski, Marin Soljačić,
- Abstract要約: 本稿では、量子コンピュータ上での勾配ダイナミクスの効率的な予測に交互アルゴリズムを活用する新しいフレームワークQuACKを提案する。
量子最適化と機械学習の幅広い応用において、勾配に基づく最適化を加速するQuACKの驚くべき能力を示す。
- 参考スコア(独自算出の注目度): 4.134992977596645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum optimization, a key application of quantum computing, has traditionally been stymied by the linearly increasing complexity of gradient calculations with an increasing number of parameters. This work bridges the gap between Koopman operator theory, which has found utility in applications because it allows for a linear representation of nonlinear dynamical systems, and natural gradient methods in quantum optimization, leading to a significant acceleration of gradient-based quantum optimization. We present Quantum-circuit Alternating Controlled Koopman learning (QuACK), a novel framework that leverages an alternating algorithm for efficient prediction of gradient dynamics on quantum computers. We demonstrate QuACK's remarkable ability to accelerate gradient-based optimization across a range of applications in quantum optimization and machine learning. In fact, our empirical studies, spanning quantum chemistry, quantum condensed matter, quantum machine learning, and noisy environments, have shown accelerations of more than 200x speedup in the overparameterized regime, 10x speedup in the smooth regime, and 3x speedup in the non-smooth regime. With QuACK, we offer a robust advancement that harnesses the advantage of gradient-based quantum optimization for practical benefits.
- Abstract(参考訳): 量子コンピューティングの鍵となる応用である量子最適化は、伝統的にパラメータ数の増加とともに勾配計算の複雑さが線形に増大することによって妨げられている。
この研究は、非線形力学系の線形表現を可能にしたクープマン作用素理論と、量子最適化における自然な勾配法とのギャップを埋め、勾配に基づく量子最適化の大幅な加速に繋がった。
本稿では、量子コンピュータ上での勾配ダイナミクスの効率的な予測に交互アルゴリズムを活用する新しいフレームワークQuACKを提案する。
量子最適化と機械学習の幅広い応用において、勾配に基づく最適化を加速するQuACKの驚くべき能力を示す。
実際、量子化学、量子凝縮物質、量子機械学習、ノイズの多い環境にまたがる我々の実証研究は、過度にパラメータ化された状態における200倍以上のスピードアップ、滑らかな状態における10倍のスピードアップ、非滑らかな状態における3倍のスピードアップを示してきた。
QuACKでは、現実的な利益のために勾配に基づく量子最適化の利点を生かした堅牢な進歩を提供する。
関連論文リスト
- Learning Parameterized Quantum Circuits with Quantum Gradient [8.64967968665265]
我々は、量子勾配を利用して勾配型コスト関数のPQC学習を強化するネスト最適化モデルを導入する。
我々の手法は量子アルゴリズムを用いて、PQC学習における永続的な課題である勾配の消失のタイプを特定し、克服する。
論文 参考訳(メタデータ) (2024-09-30T07:50:47Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
変分量子固有解法は、多くの応用に影響を及ぼすことのできる短期的アルゴリズムとして評価される。
収束性を改善するアルゴリズムや手法を見つけることは、VQEの短期ハードウェアの能力を加速するために重要である。
論文 参考訳(メタデータ) (2024-04-03T18:00:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
本稿では,デジタルカウンセバティック量子最適化(DCQO)パラダイムを用いて,ポートフォリオ最適化のための高速なディジタル量子アルゴリズムを提案する。
提案手法は,アルゴリズムの回路深度要件を特に低減し,解の精度を向上し,現在の量子プロセッサに適している。
我々は,IonQトラップイオン量子コンピュータ上で最大20量子ビットを使用するプロトコルの利点を実験的に実証した。
論文 参考訳(メタデータ) (2023-08-29T17:53:08Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
変動量子回路のコスト関数とその分散を効率よく計算する方法を見出した。
この方法は、変分量子回路のトレーニング容易性を証明し、バレンプラトー問題を克服できる設計戦略を探索するために用いられる。
論文 参考訳(メタデータ) (2023-02-09T14:05:18Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
変分量子古典ハイブリッドアルゴリズムは、近い将来に量子コンピュータの実用的な問題を解くための有望な戦略と見なされている。
本稿では,ベイズ空間における有望な領域を特定するために勾配を用いた高速・スローアルゴリズムを提案する。
本研究は, 量子化学, 最適化, 量子シミュレーション問題における変分量子アルゴリズムの応用に近づいたものである。
論文 参考訳(メタデータ) (2022-03-04T17:48:57Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Optimal training of variational quantum algorithms without barren
plateaus [0.0]
変分量子アルゴリズム(VQA)は、短期量子コンピュータの効率的な利用を約束する。
量子状態学習のためのVQAを最適に訓練する方法を示す。
量子機械学習におけるガウスカーネルの応用を提案する。
論文 参考訳(メタデータ) (2021-04-29T17:54:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。