論文の概要: Learning Parameterized Quantum Circuits with Quantum Gradient
- arxiv url: http://arxiv.org/abs/2409.20044v1
- Date: Mon, 30 Sep 2024 07:50:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:03:16.333811
- Title: Learning Parameterized Quantum Circuits with Quantum Gradient
- Title(参考訳): 量子勾配を用いた量子回路の学習
- Authors: Keren Li, Yuanfeng Wang, Pan Gao, Shenggen Zheng,
- Abstract要約: 我々は、量子勾配を利用して勾配型コスト関数のPQC学習を強化するネスト最適化モデルを導入する。
我々の手法は量子アルゴリズムを用いて、PQC学習における永続的な課題である勾配の消失のタイプを特定し、克服する。
- 参考スコア(独自算出の注目度): 8.64967968665265
- License:
- Abstract: Parameterized quantum circuits (PQCs) are crucial for quantum machine learning and circuit synthesis, enabling the practical implementation of complex quantum tasks. However, PQC learning has been largely confined to classical optimization methods, which suffer from issues like gradient vanishing. In this work, we introduce a nested optimization model that leverages quantum gradient to enhance PQC learning for polynomial-type cost functions. Our approach utilizes quantum algorithms to identify and overcome a type of gradient vanishing-a persistent challenge in PQC learning-by effectively navigating the optimization landscape. We also mitigate potential barren plateaus of our model and manage the learning cost via restricting the optimization region. Numerically, we demonstrate the feasibility of the approach on two tasks: the Max-Cut problem and polynomial optimization. The method excels in generating circuits without gradient vanishing and effectively optimizes the cost function. From the perspective of quantum algorithms, our model improves quantum optimization for polynomial-type cost functions, addressing the challenge of exponential sample complexity growth.
- Abstract(参考訳): 量子化量子回路(PQC)は、量子機械学習と回路合成において不可欠であり、複雑な量子タスクの実装を可能にする。
しかし、PQC学習は古典的な最適化手法に限られており、勾配の消失などの問題に悩まされている。
本研究では,多項式型コスト関数に対するPQC学習を強化するために量子勾配を利用するネスト最適化モデルを提案する。
提案手法は量子アルゴリズムを用いて,PQC学習における勾配の消失のタイプを特定し,克服する。
また、モデルのバレンプラトーを緩和し、最適化領域を制限して学習コストを管理する。
数値的には、マックス・カッツ問題と多項式最適化という2つの課題におけるアプローチの実現可能性を示す。
この方法は、勾配が消えることなく回路生成に優れ、コスト関数を効果的に最適化する。
量子アルゴリズムの観点から、我々のモデルは指数的サンプル複雑性成長の課題に対処し、多項式型コスト関数の量子最適化を改善する。
関連論文リスト
- Polynomial Reduction Methods and their Impact on QAOA Circuits [2.4588375162098877]
量子最適化のために、高次問題定式化が、異なる所望の非機能特性を活用するためにどのように使用できるかを示す。
本研究は,本手法がさまざまなトレードオフを満足できることを示すとともに,今後の汎用抽象概念の構築の可能性も示唆している。
論文 参考訳(メタデータ) (2024-06-13T07:43:18Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
最適化問題に対する量子インフォームド再帰最適化(QIRO)アルゴリズムのファミリを提案し,実装する。
提案手法は、量子資源を利用して、問題固有の古典的還元ステップで使用される情報を得る。
バックトラック技術を用いて、量子ハードウェアの要求を増大させることなく、アルゴリズムの性能をさらに向上させる。
論文 参考訳(メタデータ) (2023-08-25T18:02:06Z) - QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning [4.134992977596645]
本稿では、量子コンピュータ上での勾配ダイナミクスの効率的な予測に交互アルゴリズムを活用する新しいフレームワークQuACKを提案する。
量子最適化と機械学習の幅広い応用において、勾配に基づく最適化を加速するQuACKの驚くべき能力を示す。
論文 参考訳(メタデータ) (2022-11-02T17:59:25Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
本研究では,連続空間の逆設計問題を,制約のないバイナリ最適化問題にマッピングする,汎用的な機械学習ベースのフレームワークを開発する。
本研究では, 熱発光トポロジを熱光応用に最適化し, (ii) 高効率ビームステアリングのための拡散メタグレーティングを行うことにより, 2つの逆設計問題に対するフレームワークの性能を示す。
論文 参考訳(メタデータ) (2021-05-06T02:22:23Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
任意サイズのパラメタライズド量子回路のためのFLexible Initializerを提案する。
FLIPは任意の種類のPQCに適用することができ、初期パラメータの一般的なセットに頼る代わりに、成功したパラメータの構造を学ぶように調整されている。
本稿では, 3つのシナリオにおいてFLIPを用いることの利点を述べる。不毛な高原における問題ファミリ, 最大カット問題インスタンスを解くPQCトレーニング, 1次元フェルミ-ハッバードモデルの基底状態エネルギーを求めるPQCトレーニングである。
論文 参考訳(メタデータ) (2021-03-15T17:38:33Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。