Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity
- URL: http://arxiv.org/abs/2211.01500v1
- Date: Wed, 2 Nov 2022 22:09:24 GMT
- Title: Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity
- Authors: Wenxuan Zhou, David Held
- Abstract summary: A simple gripper can solve more complex manipulation tasks if it can utilize the external environment.
We develop a system based on reinforcement learning to address these limitations.
It demonstrates dynamic and contact-rich motions with a simple gripper that generalizes across objects with various size, density, surface friction, and shape with a 78% success rate.
- Score: 22.01389127145982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A simple gripper can solve more complex manipulation tasks if it can utilize
the external environment such as pushing the object against the table or a
vertical wall, known as "Extrinsic Dexterity." Previous work in extrinsic
dexterity usually has careful assumptions about contacts which impose
restrictions on robot design, robot motions, and the variations of the physical
parameters. In this work, we develop a system based on reinforcement learning
(RL) to address these limitations. We study the task of "Occluded Grasping"
which aims to grasp the object in configurations that are initially occluded;
the robot needs to move the object into a configuration from which these grasps
can be achieved. We present a system with model-free RL that successfully
achieves this task using a simple gripper with extrinsic dexterity. The policy
learns emergent behaviors of pushing the object against the wall to rotate and
then grasp it without additional reward terms on extrinsic dexterity. We
discuss important components of the system including the design of the RL
problem, multi-grasp training and selection, and policy generalization with
automatic curriculum. Most importantly, the policy trained in simulation is
zero-shot transferred to a physical robot. It demonstrates dynamic and
contact-rich motions with a simple gripper that generalizes across objects with
various size, density, surface friction, and shape with a 78% success rate.
Videos can be found at https://sites.google.com/view/grasp-ungraspable/.
Related papers
- HACMan++: Spatially-Grounded Motion Primitives for Manipulation [28.411361363637006]
We introduce spatially-grounded parameterized motion primitives in our method HACMan++.
By grounding the primitives on a spatial location in the environment, our method is able to effectively generalize across object shape and pose variations.
Our approach significantly outperforms existing methods, particularly in complex scenarios demanding both high-level sequential reasoning and object generalization.
arXiv Detail & Related papers (2024-07-11T15:10:14Z) - Grasp Anything: Combining Teacher-Augmented Policy Gradient Learning with Instance Segmentation to Grasp Arbitrary Objects [18.342569823885864]
Teacher-Augmented Policy Gradient (TAPG) is a novel two-stage learning framework that synergizes reinforcement learning and policy distillation.
TAPG facilitates guided, yet adaptive, learning of a sensorimotor policy, based on object segmentation.
Our trained policies adeptly grasp a wide variety of objects from cluttered scenarios in simulation and the real world based on human-understandable prompts.
arXiv Detail & Related papers (2024-03-15T10:48:16Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
We learn a sequence of actions that utilize the environment to change the object's pose.
Our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment.
We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace.
arXiv Detail & Related papers (2023-10-26T21:28:23Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Decoupling Skill Learning from Robotic Control for Generalizable Object
Manipulation [35.34044822433743]
Recent works in robotic manipulation have shown potential for tackling a range of tasks.
We conjecture that this is due to the high-dimensional action space for joint control.
In this paper, we take an alternative approach and separate the task of learning 'what to do' from 'how to do it'
The whole-body robotic kinematic control is optimized to execute the high-dimensional joint motion to reach the goals in the workspace.
arXiv Detail & Related papers (2023-03-07T16:31:13Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
In robotics, one approach to generate training data builds on simulations based on dynamics models derived from first principles.
Here, we leverage the imbalance in complexity of the dynamics to learn more sample-efficiently.
We validate our method on several challenging simulated tasks and demonstrate that it improves learning both alone and when combined with an existing hindsight algorithm.
arXiv Detail & Related papers (2023-03-03T21:55:04Z) - DexTransfer: Real World Multi-fingered Dexterous Grasping with Minimal
Human Demonstrations [51.87067543670535]
We propose a robot-learning system that can take a small number of human demonstrations and learn to grasp unseen object poses.
We train a dexterous grasping policy that takes the point clouds of the object as input and predicts continuous actions to grasp objects from different initial robot states.
The policy learned from our dataset can generalize well on unseen object poses in both simulation and the real world.
arXiv Detail & Related papers (2022-09-28T17:51:49Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - A Differentiable Recipe for Learning Visual Non-Prehensile Planar
Manipulation [63.1610540170754]
We focus on the problem of visual non-prehensile planar manipulation.
We propose a novel architecture that combines video decoding neural models with priors from contact mechanics.
We find that our modular and fully differentiable architecture performs better than learning-only methods on unseen objects and motions.
arXiv Detail & Related papers (2021-11-09T18:39:45Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
The current dominant paradigm in sensorimotor control, whether imitation or reinforcement learning, is to train policies directly in raw action spaces.
We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space.
NDPs outperform the prior state-of-the-art in terms of either efficiency or performance across several robotic control tasks.
arXiv Detail & Related papers (2020-12-04T18:59:32Z) - COCOI: Contact-aware Online Context Inference for Generalizable
Non-planar Pushing [87.7257446869134]
General contact-rich manipulation problems are long-standing challenges in robotics.
Deep reinforcement learning has shown great potential in solving robot manipulation tasks.
We propose COCOI, a deep RL method that encodes a context embedding of dynamics properties online.
arXiv Detail & Related papers (2020-11-23T08:20:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.