論文の概要: Exploring Explainability Methods for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2211.01770v1
- Date: Thu, 3 Nov 2022 12:50:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 12:41:50.629182
- Title: Exploring Explainability Methods for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークにおける説明可能性の探索
- Authors: Harsh Patel, Shivam Sahni
- Abstract要約: グラフに基づく超画素画像分類タスクにおいて、グラフ注意ネットワーク(GAT)における一般的な説明可能性アプローチの適用性を示す。
その結果、GNN、特にGATにおける説明可能性の概念に新たな光を当てた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing use of deep learning methods, particularly graph neural
networks, which encode intricate interconnectedness information, for a variety
of real tasks, there is a necessity for explainability in such settings. In
this paper, we demonstrate the applicability of popular explainability
approaches on Graph Attention Networks (GAT) for a graph-based super-pixel
image classification task. We assess the qualitative and quantitative
performance of these techniques on three different datasets and describe our
findings. The results shed a fresh light on the notion of explainability in
GNNs, particularly GATs.
- Abstract(参考訳): 複雑な相互接続性情報をエンコードするディープラーニング手法、特にグラフニューラルネットワークが、さまざまな実際のタスクで使用されるようになると、そのような設定では説明可能性が必要となる。
本稿では,グラフに基づく超画素画像分類タスクにおいて,グラフ注意ネットワーク(GAT)に対する一般的な説明可能性アプローチの適用性を示す。
これらの手法の質的,定量的な性能を3つの異なるデータセットで評価し,その結果について述べる。
その結果、GNN、特にGATにおける説明可能性の概念に新たな光を当てた。
関連論文リスト
- Graph Reasoning Networks [9.18586425686959]
Graph Reasoning Networks (GRNs) は、グラフ表現と学習したグラフ表現の長所と、微分可能満足度解法に基づく推論モジュールを組み合わせるための新しいアプローチである。
実世界のデータセットの結果は、GNNに匹敵するパフォーマンスを示している。
合成データセットの実験は、新しく提案された手法の可能性を示している。
論文 参考訳(メタデータ) (2024-07-08T10:53:49Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Learning How to Propagate Messages in Graph Neural Networks [55.2083896686782]
本稿では,グラフニューラルネットワーク(GNN)におけるメッセージ伝搬戦略の学習問題について検討する。
本稿では,GNNパラメータの最大類似度推定を支援するために,最適伝搬ステップを潜時変数として導入する。
提案フレームワークは,GNNにおけるメッセージのパーソナライズおよび解釈可能な伝達戦略を効果的に学習することができる。
論文 参考訳(メタデータ) (2023-10-01T15:09:59Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
グラフニューラルネットワーク(GNN)は、グラフ表現学習の先駆けとなった。
本研究では,特徴学習理論の文脈におけるグラフ畳み込みの役割について検討する。
論文 参考訳(メタデータ) (2023-06-24T10:21:11Z) - A Survey on Explainability of Graph Neural Networks [4.612101932762187]
グラフニューラルネットワーク(GNN)は、グラフベースの強力なディープラーニングモデルである。
本調査は,GNNの既存の説明可能性技術の概要を概観することを目的としている。
論文 参考訳(メタデータ) (2023-06-02T23:36:49Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
グラフニューラルネットワーク(GNN)は、グラフィカルなタスクをエンドツーエンドで処理するニューラルネットワークの一種である。
GNNの複雑なダイナミクスは、グラフの特徴のどの部分が予測に強く寄与しているかを理解するのを困難にしている。
本研究では,グラフ内の重要な構造を検出するために,フレキシブルモデルに依存しない説明法を提案する。
論文 参考訳(メタデータ) (2023-02-04T09:46:47Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
グラフニューラルネットワーク(GNN)は、グラフ表現学習に有効なツールである。
本稿では,グラフニューラルネットワークモデルの選択に非依存な GraphRETRIEVAL という検索強化方式を提案する。
我々は13のデータセットに対して包括的な実験を行い、GRAPHRETRIEVALが既存のGNNよりも大幅に改善されていることを観察した。
論文 参考訳(メタデータ) (2022-06-01T09:59:09Z) - Capsule Graph Neural Networks with EM Routing [8.632437524560133]
本稿では、EMルーティング機構(CapsGNNEM)を用いて、高品質なグラフ埋め込みを生成する新しいCapsule Graph Neural Networkを提案する。
多くの実世界のグラフデータセットに対する実験結果から、提案したCapsGNNEMはグラフ分類タスクにおいて9つの最先端モデルより優れていることが示された。
論文 参考訳(メタデータ) (2021-10-18T06:23:37Z) - VisGraphNet: a complex network interpretation of convolutional neural
features [6.50413414010073]
ニューラルネットワークの特徴マップをモデル化するための可視性グラフの提案と検討を行う。
この研究は、元のデータよりもこれらのグラフによって提供される別の視点によって動機付けられている。
論文 参考訳(メタデータ) (2021-08-27T20:21:04Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。