論文の概要: Learning to Configure Computer Networks with Neural Algorithmic
Reasoning
- arxiv url: http://arxiv.org/abs/2211.01980v1
- Date: Wed, 26 Oct 2022 13:37:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 14:56:23.452558
- Title: Learning to Configure Computer Networks with Neural Algorithmic
Reasoning
- Title(参考訳): ニューラルネットワーク推論によるコンピュータネットワークの構成学習
- Authors: Luca Beurer-Kellner, Martin Vechev, Laurent Vanbever, Petar
Veli\v{c}kovi\'c
- Abstract要約: 我々は、既存のルーティングプロトコルの下で所定の仕様を満たす可能性のある構成を生成することを学習するニューラルネットワークモデルを訓練する。
我々の学習したシンセサイザーは、最先端のSMT方式よりも最大490倍高速であり、供給された要求の93%以上を平均で満たす構成を生成する。
- 参考スコア(独自算出の注目度): 3.867325581084419
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new method for scaling automatic configuration of computer
networks. The key idea is to relax the computationally hard search problem of
finding a configuration that satisfies a given specification into an
approximate objective amenable to learning-based techniques. Based on this
idea, we train a neural algorithmic model which learns to generate
configurations likely to (fully or partially) satisfy a given specification
under existing routing protocols. By relaxing the rigid satisfaction
guarantees, our approach (i) enables greater flexibility: it is
protocol-agnostic, enables cross-protocol reasoning, and does not depend on
hardcoded rules; and (ii) finds configurations for much larger computer
networks than previously possible. Our learned synthesizer is up to 490x faster
than state-of-the-art SMT-based methods, while producing configurations which
on average satisfy more than 93% of the provided requirements.
- Abstract(参考訳): 本稿では,コンピュータネットワークの自動構成のスケーリング手法を提案する。
鍵となるアイデアは、与えられた仕様を満たす構成を見つけるという計算量的に難しい検索問題を緩和し、学習に基づく技術に適した近似目的にすることだ。
このアイデアに基づき、既存のルーティングプロトコルの下で所定の仕様を(完全にまたは部分的に)満足する可能性のある構成を生成することを学習するニューラルネットワークモデルをトレーニングする。
厳密な満足度保証を緩和することで、我々のアプローチ
(i)より柔軟性が向上し、プロトコルに依存しず、プロトコル間の推論が可能で、ハードコードされたルールに依存しない。
(ii) 従来よりはるかに大きなコンピュータネットワークの構成を見つける。
我々の学習したシンセサイザーは、最先端のSMT方式よりも最大490倍高速であり、供給された要求の93%以上を満たす構成を生成する。
関連論文リスト
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - ECToNAS: Evolutionary Cross-Topology Neural Architecture Search [0.0]
ECToNASは、コスト効率のよい進化的クロストポロジーニューラルアーキテクチャ探索アルゴリズムである。
トレーニングとトポロジの最適化を融合して,軽量でリソースフレンドリなプロセスにします。
論文 参考訳(メタデータ) (2024-03-08T07:36:46Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
高品質のディープニューラルネットワークをトレーニングするには、非自明で高価なプロセスである適切なハイパーパラメータを選択する必要がある。
本研究では,ネットワークアーキテクチャにおける初期化と最大学習率の依存性を正確に評価する。
ネットワークランキングは、ベンチマークのトレーニングネットワークにより容易に変更可能であることを実証する。
論文 参考訳(メタデータ) (2024-02-27T11:52:49Z) - A foundation for exact binarized morphological neural networks [2.8925699537310137]
ディープニューラルネットワーク(NN)のトレーニングと実行は、多くの計算とエネルギー集約的な特別なハードウェアを必要とすることが多い。
計算量と消費電力を減らす方法の1つは二重NNを使うことであるが、これは符号関数が非滑らかな勾配を持つため訓練が困難である。
本研究では,特定の条件下での性能を損なうことなく,ConvNetを二項化できる数学的形態(MM)に基づくモデルを提案する。
論文 参考訳(メタデータ) (2024-01-08T11:37:44Z) - SimQ-NAS: Simultaneous Quantization Policy and Neural Architecture
Search [6.121126813817338]
最近のワンショットニューラルネットワーク検索アルゴリズムは、特定のタスクに適したハードウェアに依存しないスーパーネットワークをトレーニングし、異なるハードウェアプラットフォームのための効率的なサブネットワークを抽出する。
我々は,光学習された予測器と組み合わせた多目的探索アルゴリズムを用いることで,サブネットワークアーキテクチャとそれに対応する量子化ポリシーの両方を効率的に探索できることを示す。
論文 参考訳(メタデータ) (2023-12-19T22:08:49Z) - A Graph Deep Learning Framework for High-Level Synthesis Design Space
Exploration [11.154086943903696]
High-Level Synthesisは、アプリケーション固有の高速プロトタイピングのためのソリューションである。
本稿では,加速性能とハードウェアコストを共同で予測するグラフニューラルネットワークHLSを提案する。
提案手法は,一般的なシミュレータと同等の精度で予測できることを示す。
論文 参考訳(メタデータ) (2021-11-29T18:17:45Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
本稿では,ニューラルネットワークの「圧縮可能な部分空間」を訓練する手法を提案する。
構造的・非構造的空間に対する推定時間における微粒な精度・効率のトレードオフを任意に達成するための結果を示す。
我々のアルゴリズムは、可変ビット幅での量子化にまで拡張し、個別に訓練されたネットワークと同等の精度を実現する。
論文 参考訳(メタデータ) (2021-10-08T17:03:34Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
我々は,情報理論に根ざし,計算神経科学に発達した効率的な符号化原理を採用することを提案する。
スパース符号化は出力信号のエントロピーを効果的に最大化できることを示す。
公開画像分類データセットを用いた実験により,提案アルゴリズムでスクラッチから学習した構造を用いて,最も優れた専門家設計構造に匹敵する分類精度が得られることを示した。
論文 参考訳(メタデータ) (2021-05-27T12:27:24Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
パケット遅延を最小限に抑えるため,制約付き待ち行列ネットワークにおけるスケジューリングの問題を考える。
我々は、利用可能な原子ポリシーよりも優れたスケジューラを生成するポリシー勾配に基づく強化学習アルゴリズムを使用する。
論文 参考訳(メタデータ) (2021-05-01T10:18:34Z) - Exploration of Hardware Acceleration Methods for an XNOR Traffic Signs
Classifier [0.0]
本研究では,交通標識分類のためのXNORネットワークの高速化の可能性を検討する。
我々は,約450fpsの推論が可能な,XNORネットワーク用の独自のHDLアクセラレータを提案する。
さらに優れた結果は、Xilinx FINNアクセラレータの2番目の方法で得られ、550フレームレートで入力画像を処理することができます。
論文 参考訳(メタデータ) (2021-04-06T06:01:57Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。