Solving Subset Sum Problems using Quantum Inspired Optimization
Algorithms with Applications in Auditing and Financial Data Analysis
- URL: http://arxiv.org/abs/2211.02653v1
- Date: Fri, 28 Oct 2022 12:22:15 GMT
- Title: Solving Subset Sum Problems using Quantum Inspired Optimization
Algorithms with Applications in Auditing and Financial Data Analysis
- Authors: David Biesner, Thore Gerlach, Christian Bauckhage, Bernd Kliem, Rafet
Sifa
- Abstract summary: We show how gradient descent on Hopfield Networks reliably finds solutions for both artificial and real data.
We outline how this algorithm can be applied by adiabatic quantum computers.
- Score: 2.0981723008692392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many applications in automated auditing and the analysis and consistency
check of financial documents can be formulated in part as the subset sum
problem: Given a set of numbers and a target sum, find the subset of numbers
that sums up to the target. The problem is NP-hard and classical solving
algorithms are therefore not practical to use in many real applications. We
tackle the problem as a QUBO (quadratic unconstrained binary optimization)
problem and show how gradient descent on Hopfield Networks reliably finds
solutions for both artificial and real data. We outline how this algorithm can
be applied by adiabatic quantum computers (quantum annealers) and specialized
hardware (field programmable gate arrays) for digital annealing and run
experiments on quantum annealing hardware.
Related papers
- Quantum Algorithms for Drone Mission Planning [0.0]
Mission planning often involves optimising the use of ISR (Intelligence, Surveillance and Reconnaissance) assets in order to achieve a set of mission objectives.
Finding such solutions is often an NP-Hard problem and cannot be solved efficiently on classical computers.
We investigate near term quantum algorithms that have the potential to offer speed-ups against current classical methods.
arXiv Detail & Related papers (2024-09-27T10:58:25Z) - Hybrid classical-quantum branch-and-bound algorithm for solving integer
linear problems [0.0]
Quantum annealers are suited to solve several logistic optimization problems expressed in the QUBO formulation.
The solutions proposed by the quantum annealers are generally not optimal, as thermal noise and other disturbing effects arise when the number of qubits involved in the calculation is too large.
We propose the use of the classical branch-and-bound algorithm, that divides the problem into sub-problems which are described by a lower number of qubits.
arXiv Detail & Related papers (2023-11-16T09:19:01Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Efficient MILP Decomposition in Quantum Computing for ReLU Network
Robustness [2.854196251981274]
In this study, we examine two decomposition methods for Mixed-Integer Linear Programming (MILP)
We concentrate on breaking down the original problem into smaller subproblems, which are then solved iteratively using a combined quantum-classical hardware approach.
Our experimental results demonstrate that this approach can save up to 90% of qubits compared to existing methods on quantum annealing and gate-based quantum computers.
arXiv Detail & Related papers (2023-04-30T13:10:56Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Complexity-Theoretic Limitations on Quantum Algorithms for Topological
Data Analysis [59.545114016224254]
Quantum algorithms for topological data analysis seem to provide an exponential advantage over the best classical approach.
We show that the central task of TDA -- estimating Betti numbers -- is intractable even for quantum computers.
We argue that an exponential quantum advantage can be recovered if the input data is given as a specification of simplices.
arXiv Detail & Related papers (2022-09-28T17:53:25Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - A Hybrid Quantum-Classical Heuristic to solve large-scale Integer Linear
Programs [0.4925222726301578]
We present a method that integrates any quantum algorithm capable of finding solutions to integer linear programs into the Branch-and-Price algorithm.
The role of the quantum algorithm is to find integer solutions to subproblems appearing in Branch-and-Price.
arXiv Detail & Related papers (2021-03-29T08:59:26Z) - Integer Programming from Quantum Annealing and Open Quantum Systems [0.8049701904919515]
We develop an algorithm that solves integer linear programming problems, a classically NP-hard problem, on a quantum annealer.
We find that the algorithm outperforms random guessing but is limited to small problems.
arXiv Detail & Related papers (2020-09-24T22:18:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.