Efficient MILP Decomposition in Quantum Computing for ReLU Network
Robustness
- URL: http://arxiv.org/abs/2305.00472v2
- Date: Wed, 11 Oct 2023 07:47:07 GMT
- Title: Efficient MILP Decomposition in Quantum Computing for ReLU Network
Robustness
- Authors: Nicola Franco, Tom Wollschl\"ager, Benedikt Poggel, Stephan
G\"unnemann, Jeanette Miriam Lorenz
- Abstract summary: In this study, we examine two decomposition methods for Mixed-Integer Linear Programming (MILP)
We concentrate on breaking down the original problem into smaller subproblems, which are then solved iteratively using a combined quantum-classical hardware approach.
Our experimental results demonstrate that this approach can save up to 90% of qubits compared to existing methods on quantum annealing and gate-based quantum computers.
- Score: 2.854196251981274
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Emerging quantum computing technologies, such as Noisy Intermediate-Scale
Quantum (NISQ) devices, offer potential advancements in solving mathematical
optimization problems. However, limitations in qubit availability, noise, and
errors pose challenges for practical implementation. In this study, we examine
two decomposition methods for Mixed-Integer Linear Programming (MILP) designed
to reduce the original problem size and utilize available NISQ devices more
efficiently. We concentrate on breaking down the original problem into smaller
subproblems, which are then solved iteratively using a combined
quantum-classical hardware approach. We conduct a detailed analysis for the
decomposition of MILP with Benders and Dantzig-Wolfe methods. In our analysis,
we show that the number of qubits required to solve Benders is exponentially
large in the worst-case, while remains constant for Dantzig-Wolfe.
Additionally, we leverage Dantzig-Wolfe decomposition on the use-case of
certifying the robustness of ReLU networks. Our experimental results
demonstrate that this approach can save up to 90\% of qubits compared to
existing methods on quantum annealing and gate-based quantum computers.
Related papers
- Scaling Up the Quantum Divide and Conquer Algorithm for Combinatorial Optimization [0.8121127831316319]
We propose a method for constructing quantum circuits which greatly reduces inter-device communication costs.
We show that we can construct tractable circuits nearly three times the size of previous QDCA methods while retaining a similar or greater level of quality.
arXiv Detail & Related papers (2024-05-01T20:49:50Z) - Variational quantum eigensolver with linear depth problem-inspired
ansatz for solving portfolio optimization in finance [7.501820750179541]
This paper introduces the variational quantum eigensolver (VQE) to solve portfolio optimization problems in finance.
We implement the HDC experiments on the superconducting quantum computer Wu Kong with up to 55 qubits.
The HDC scheme shows great potential for achieving quantum advantage in the NISQ era.
arXiv Detail & Related papers (2024-03-07T07:45:47Z) - Quantum Semidefinite Programming with Thermal Pure Quantum States [0.5639904484784125]
We show that a quantization'' of the matrix multiplicative-weight algorithm can provide approximate solutions to SDPs quadratically faster than the best classical algorithms.
We propose a modification of this quantum algorithm and show that a similar speedup can be obtained by replacing the Gibbs-state sampler with the preparation of thermal pure quantum (TPQ) states.
arXiv Detail & Related papers (2023-10-11T18:00:53Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - Squeezing and quantum approximate optimization [0.6562256987706128]
Variational quantum algorithms offer fascinating prospects for the solution of optimization problems using digital quantum computers.
However, the achievable performance in such algorithms and the role of quantum correlations therein remain unclear.
We show numerically as well as on an IBM quantum chip how highly squeezed states are generated in a systematic procedure.
arXiv Detail & Related papers (2022-05-20T18:00:06Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.