ESKNet-An enhanced adaptive selection kernel convolution for breast
tumors segmentation
- URL: http://arxiv.org/abs/2211.02915v2
- Date: Sat, 20 Jan 2024 12:34:59 GMT
- Title: ESKNet-An enhanced adaptive selection kernel convolution for breast
tumors segmentation
- Authors: Gongping Chen, Lu Zhou, Jianxun Zhang, Xiaotao Yin, Liang Cui, Yu Dai
- Abstract summary: Breast cancer is one of the common cancers that endanger the health of women globally.
CNNs have been proposed to segment breast tumors from ultrasound images.
We introduce an enhanced selective kernel convolution for breast tumor segmentation.
- Score: 13.897849323634283
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Breast cancer is one of the common cancers that endanger the health of women
globally. Accurate target lesion segmentation is essential for early clinical
intervention and postoperative follow-up. Recently, many convolutional neural
networks (CNNs) have been proposed to segment breast tumors from ultrasound
images. However, the complex ultrasound pattern and the variable tumor shape
and size bring challenges to the accurate segmentation of the breast lesion.
Motivated by the selective kernel convolution, we introduce an enhanced
selective kernel convolution for breast tumor segmentation, which integrates
multiple feature map region representations and adaptively recalibrates the
weights of these feature map regions from the channel and spatial dimensions.
This region recalibration strategy enables the network to focus more on
high-contributing region features and mitigate the perturbation of less useful
regions. Finally, the enhanced selective kernel convolution is integrated into
U-net with deep supervision constraints to adaptively capture the robust
representation of breast tumors. Extensive experiments with twelve
state-of-the-art deep learning segmentation methods on three public breast
ultrasound datasets demonstrate that our method has a more competitive
segmentation performance in breast ultrasound images.
Related papers
- Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
We propose a semi- and weakly-supervised learning framework for mass segmentation.
We use limited strongly-labeled samples and sufficient weakly-labeled samples to achieve satisfactory performance.
Experiments on CBIS-DDSM and INbreast datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-03-14T12:05:25Z) - Progressive Dual Priori Network for Generalized Breast Tumor Segmentation [5.003997324423131]
We propose a progressive dual priori network ( PDPNet) to segment breast tumors from DCE-MRI images.
The results show that the DSC and HD95 of PDPNet were improved at least by 5.13% and 7.58% respectively on multi-center test sets.
arXiv Detail & Related papers (2023-10-20T15:12:06Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - AAU-net: An Adaptive Attention U-net for Breast Lesions Segmentation in
Ultrasound Images [10.036858255491458]
We develop an adaptive attention U-net (AAU-net) to segment breast lesions automatically and stably from ultrasound images.
Specifically, we introduce a hybrid adaptive attention module, which mainly consists of a channel self-attention block and a spatial self-attention block.
arXiv Detail & Related papers (2022-04-26T05:12:00Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z) - ESTAN: Enhanced Small Tumor-Aware Network for Breast Ultrasound Image
Segmentation [0.0]
We propose a novel deep neural network architecture, namely Enhanced Small Tumor-Aware Network (ESTAN) to accurately segment breast tumors.
ESTAN introduces two encoders to extract and fuse image context information at different scales and utilizes row-column-wise kernels in the encoder to adapt to breast anatomy.
arXiv Detail & Related papers (2020-09-27T16:42:59Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.