論文の概要: 1-D Convolutional Graph Convolutional Networks for Fault Detection in
Distributed Energy Systems
- arxiv url: http://arxiv.org/abs/2211.02930v1
- Date: Sat, 5 Nov 2022 15:46:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 19:17:35.206474
- Title: 1-D Convolutional Graph Convolutional Networks for Fault Detection in
Distributed Energy Systems
- Title(参考訳): 分散型エネルギーシステムにおける故障検出のための1次元畳み込みグラフ畳み込みネットワーク
- Authors: Bang L.H. Nguyen, Tuyen Vu, Thai-Thanh Nguyen, Mayank Panwar and Rob
Hovsapian
- Abstract要約: 1次元畳み込みニューラルネットワーク(1D-CNN)とグラフ畳み込みニューラルネットワーク(GCN)を組み合わせることで、マイクログリッド内の電圧測定から時空間相関を抽出することができる。
断層検出スキームには、断層イベント検出、断層タイプと位相分類、断層位置が含まれる。
達成可能な精度は99.27%、98.1%、98.75%、および95.6%である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a 1-D convolutional graph neural network for fault
detection in microgrids. The combination of 1-D convolutional neural networks
(1D-CNN) and graph convolutional networks (GCN) helps extract both
spatial-temporal correlations from the voltage measurements in microgrids. The
fault detection scheme includes fault event detection, fault type and phase
classification, and fault location. There are five neural network model
training to handle these tasks. Transfer learning and fine-tuning are applied
to reduce training efforts. The combined recurrent graph convolutional neural
networks (1D-CGCN) is compared with the traditional ANN structure on the
Potsdam 13-bus microgrid dataset. The achievable accuracy of 99.27%, 98.1%,
98.75%, and 95.6% for fault detection, fault type classification, fault phase
identification, and fault location respectively.
- Abstract(参考訳): 本稿では,マイクログリッドの故障検出のための1次元畳み込みグラフニューラルネットワークを提案する。
1次元畳み込みニューラルネットワーク(1D-CNN)とグラフ畳み込みニューラルネットワーク(GCN)の組み合わせは、マイクログリッド内の電圧測定から時空間相関を抽出するのに役立つ。
障害検出スキームには、障害イベント検出、障害タイプ及び位相分類、障害位置が含まれる。
これらのタスクを処理するための5つのニューラルネットワークモデルトレーニングがある。
転校学習と微調整は、トレーニング労力を減らすために適用される。
組み合わせたグラフ畳み込みニューラルネットワーク(1D-CGCN)は、ポツダム13バスマイクログリッドデータセット上の従来のANN構造と比較される。
達成可能な精度は99.27%、98.1%、98.75%、および95.6%である。
関連論文リスト
- Verified Neural Compressed Sensing [58.98637799432153]
精度の高い計算タスクのために、初めて(私たちの知識を最大限に活用するために)証明可能なニューラルネットワークを開発します。
極小問題次元(最大50)では、線形および双項線形測定からスパースベクトルを確実に回復するニューラルネットワークを訓練できることを示す。
ネットワークの複雑さは問題の難易度に適応できることを示し、従来の圧縮センシング手法が証明不可能な問題を解く。
論文 参考訳(メタデータ) (2024-05-07T12:20:12Z) - Neural Loss Function Evolution for Large-Scale Image Classifier Convolutional Neural Networks [0.0]
分類では、ニューラルネットワークはクロスエントロピーを最小化して学習するが、精度を用いて評価され、比較される。
この格差は、ニューラルネットワークのクロスエントロピーのドロップイン置換損失関数探索であるニューラルロス関数探索(NLFS)を示唆している。
より多様な損失関数を探索するNLFSの新しい探索空間を提案する。
論文 参考訳(メタデータ) (2024-01-30T17:21:28Z) - A Heterogeneous Graph-Based Multi-Task Learning for Fault Event Diagnosis in Smart Grid [1.6385815610837167]
断層の検出,位置決定,分類が可能な異種多タスク学習グラフニューラルネットワーク(MTL-GNN)を提案する。
グラフニューラルネットワーク(GNN)を使用することで、分布システムのトポロジ的表現を学習することができる。
本研究は,分散システムにおけるキーノードを識別する新しいGNNに基づく説明可能性手法を提案する。
論文 参考訳(メタデータ) (2023-09-18T16:35:30Z) - Geometric Learning-Based Transformer Network for Estimation of
Segmentation Errors [1.376408511310322]
そこで本研究では,セグメントマップ内の誤り領域を同定し,測定する手法を提案する。
提案手法は, 疑似ボリューム分割マップから生成された3次元メッシュの任意の点やノードにおける誤差を推定できる。
我々は,ヒト内耳骨迷路構造の高分解能マイクロCTデータセットを用いてネットワークの評価を行った。
論文 参考訳(メタデータ) (2023-08-09T16:58:03Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
各センサの信号の挙動を別々に検討し,相互の相関関係と隠れ関係を考慮する必要がある。
グラフノードは、異なるセンサーからのデータとして表現することができ、エッジは、これらのデータの影響を互いに表示することができる。
グラフニューラルネットワークのトレーニング中にグラフを構築する方法が提案されている。これにより、センサー間の依存関係が事前に分かっていないデータ上でモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-10-20T11:03:21Z) - Graph Neural Network-based Early Bearing Fault Detection [0.18275108630751835]
グラフニューラルネットワークを用いた新しい故障検出手法を提案する。
AIと現実世界のメカニカルシステムの間に橋を架けている。
提案手法は, 通常の対象領域に混在する異常物体を検出する。
論文 参考訳(メタデータ) (2022-04-24T08:54:55Z) - Arrhythmia Classifier Using Convolutional Neural Network with Adaptive
Loss-aware Multi-bit Networks Quantization [4.8538839251819486]
メモリ消費を23.36倍に削減する高圧縮率を実現する1次元適応型ロスアウェア量子化を提案する。
我々は、MIT-BIHデータセットで訓練された17種類のリズムクラスを分類するために、17層のエンドツーエンドニューラルネットワーク分類器を提案する。
本研究は,ハードウェアフレンドリーで,ウェアラブルデバイスに展開可能な1次元畳み込みニューラルネットワークを実現する。
論文 参考訳(メタデータ) (2022-02-27T14:26:41Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - An Introduction to Robust Graph Convolutional Networks [71.68610791161355]
本論文では, 誤りのある単一ビューあるいは複数ビューのデータに対して, 新たなロバストグラフ畳み込みニューラルネットワークを提案する。
従来のグラフ畳み込みネットワークにAutoencodersを介して余分なレイヤを組み込むことで、典型的なエラーモデルを明示的に特徴付けおよび処理します。
論文 参考訳(メタデータ) (2021-03-27T04:47:59Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。