論文の概要: Neural Loss Function Evolution for Large-Scale Image Classifier Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2403.08793v1
- Date: Tue, 30 Jan 2024 17:21:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:16:13.546190
- Title: Neural Loss Function Evolution for Large-Scale Image Classifier Convolutional Neural Networks
- Title(参考訳): 大規模画像分類器畳み込みニューラルネットワークにおけるニューラルロス関数の進化
- Authors: Brandon Morgan, Dean Hougen,
- Abstract要約: 分類では、ニューラルネットワークはクロスエントロピーを最小化して学習するが、精度を用いて評価され、比較される。
この格差は、ニューラルネットワークのクロスエントロピーのドロップイン置換損失関数探索であるニューラルロス関数探索(NLFS)を示唆している。
より多様な損失関数を探索するNLFSの新しい探索空間を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For classification, neural networks typically learn by minimizing cross-entropy, but are evaluated and compared using accuracy. This disparity suggests neural loss function search (NLFS), the search for a drop-in replacement loss function of cross-entropy for neural networks. We apply NLFS to image classifier convolutional neural networks. We propose a new search space for NLFS that encourages more diverse loss functions to be explored, and a surrogate function that accurately transfers to large-scale convolutional neural networks. We search the space using regularized evolution, a mutation-only aging genetic algorithm. After evolution and a proposed loss function elimination protocol, we transferred the final loss functions across multiple architectures, datasets, and image augmentation techniques to assess generalization. In the end, we discovered three new loss functions, called NeuroLoss1, NeuroLoss2, and NeuroLoss3 that were able to outperform cross-entropy in terms of a higher mean test accuracy as a simple drop-in replacement loss function across the majority of experiments.
- Abstract(参考訳): 分類において、ニューラルネットワークは通常、クロスエントロピーを最小化して学習するが、精度を用いて評価され、比較される。
この格差は、ニューラルネットワークのクロスエントロピーのドロップイン置換損失関数探索であるニューラルロス関数探索(NLFS)を示唆している。
NLFSを画像分類器畳み込みニューラルネットワークに適用する。
我々は、より多様な損失関数を探索するNLFSの新しい探索空間と、大規模畳み込みニューラルネットワークに正確に転送する代理関数を提案する。
我々は、突然変異のみの老化遺伝的アルゴリズムである正規化進化を用いて、この空間を探索する。
進化と損失関数除去プロトコルの提案により、複数のアーキテクチャ、データセット、画像拡張技術に最終損失関数を移行し、一般化を評価した。
その結果,NuroLoss1,NeuroLoss2,NeuroLoss3の3つの新たな損失関数が得られた。
関連論文リスト
- Loss Jump During Loss Switch in Solving PDEs with Neural Networks [11.123662745891677]
ニューラルネットワークを用いて偏微分方程式(PDE)を解くことは、科学計算コミュニティにおいて代替のアプローチとして人気を集めている。
この研究は、PDEを解決するためのニューラルネットワークのトレーニングに、異なる損失関数がどう影響するかを調査することに焦点を当てる。
論文 参考訳(メタデータ) (2024-05-06T01:18:36Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Towards Generalization in Subitizing with Neuro-Symbolic Loss using
Holographic Reduced Representations [49.22640185566807]
CogSci研究で使用される適応ツールは、CNNとViTのサブティナイズ一般化を改善することができることを示す。
学習におけるこの神経-記号的アプローチが,CNNやVTのサブティナイズ能力にどのように影響するかを検討する。
HRRに基づく損失が改善する一方の軸を除いて、ほとんどの点において、サブタイズにおいてViTはCNNと比較して著しく低下することがわかった。
論文 参考訳(メタデータ) (2023-12-23T17:54:03Z) - A Scalable Walsh-Hadamard Regularizer to Overcome the Low-degree
Spectral Bias of Neural Networks [79.28094304325116]
任意の関数を学習するニューラルネットワークの能力にもかかわらず、勾配降下によって訓練されたモデルは、しばしばより単純な関数に対するバイアスを示す。
我々は、この低度周波数に対するスペクトルバイアスが、現実のデータセットにおけるニューラルネットワークの一般化を実際にいかに損なうかを示す。
本稿では,ニューラルネットワークによる高次周波数学習を支援する,スケーラブルな機能正規化手法を提案する。
論文 参考訳(メタデータ) (2023-05-16T20:06:01Z) - Optimal rates of approximation by shallow ReLU$^k$ neural networks and
applications to nonparametric regression [12.21422686958087]
本研究では、浅いReLU$k$のニューラルネットワークに対応する変動空間の近似能力について検討する。
滑らかさの低い関数に対しては、変動ノルムの観点から近似率が確立される。
浅層ニューラルネットワークは,H"古い関数の学習に最適な最小値が得られることを示す。
論文 参考訳(メタデータ) (2023-04-04T06:35:02Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
ラベルフリップ雑音を持つ2層ReLU畳み込みニューラルネットワークを学習するためのアルゴリズム依存型リスクバウンダリを確立する。
緩やかな条件下では、勾配降下によってトレーニングされたニューラルネットワークは、ほぼゼロに近いトレーニング損失とベイズ最適試験リスクを達成できることを示す。
論文 参考訳(メタデータ) (2023-03-07T18:59:38Z) - Optimal Learning Rates of Deep Convolutional Neural Networks: Additive
Ridge Functions [19.762318115851617]
深部畳み込みニューラルネットワークにおける平均2乗誤差解析について考察する。
付加的なリッジ関数に対しては、畳み込みニューラルネットワークとReLUアクティベーション関数を併用した1つの完全連結層が最適極小値に到達できることが示される。
論文 参考訳(メタデータ) (2022-02-24T14:22:32Z) - A Sparse Coding Interpretation of Neural Networks and Theoretical
Implications [0.0]
深層畳み込みニューラルネットワークは、様々なコンピュータビジョンタスクにおいて前例のない性能を達成した。
本稿では、ReLUアクティベーションを持つニューラルネットワークのスパース符号化解釈を提案する。
正規化やプーリングなしに完全な畳み込みニューラルネットワークを導出する。
論文 参考訳(メタデータ) (2021-08-14T21:54:47Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。