論文の概要: Human-Machine Collaboration Approaches to Build a Dialogue Dataset for
Hate Speech Countering
- arxiv url: http://arxiv.org/abs/2211.03433v1
- Date: Mon, 7 Nov 2022 10:37:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 17:48:17.712300
- Title: Human-Machine Collaboration Approaches to Build a Dialogue Dataset for
Hate Speech Countering
- Title(参考訳): ヘイトスピーチカウンティングのための対話データセット構築のためのヒューマンマシンコラボレーションアプローチ
- Authors: Helena Bonaldi, Sara Dellantonio, Serra Sinem Tekiroglu, Marco Guerini
- Abstract要約: 本稿では,機械生成対話に対する人間の専門家アノテータの介入を組み合わせたダイアラルデータ収集のためのハイブリッド手法を提案する。
この研究の結果、DIALOCONANは、憎悪者とNGOオペレーターの間の3000以上の架空のマルチターン対話からなる最初のデータセットであり、6つのヘイトターゲットをカバーしている。
- 参考スコア(独自算出の注目度): 15.905165019585942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fighting online hate speech is a challenge that is usually addressed using
Natural Language Processing via automatic detection and removal of hate
content. Besides this approach, counter narratives have emerged as an effective
tool employed by NGOs to respond to online hate on social media platforms. For
this reason, Natural Language Generation is currently being studied as a way to
automatize counter narrative writing. However, the existing resources necessary
to train NLG models are limited to 2-turn interactions (a hate speech and a
counter narrative as response), while in real life, interactions can consist of
multiple turns. In this paper, we present a hybrid approach for dialogical data
collection, which combines the intervention of human expert annotators over
machine generated dialogues obtained using 19 different configurations. The
result of this work is DIALOCONAN, the first dataset comprising over 3000
fictitious multi-turn dialogues between a hater and an NGO operator, covering 6
targets of hate.
- Abstract(参考訳): オンラインヘイトスピーチと戦うことは、通常、ヘイトコンテンツの自動検出と削除を通じて自然言語処理を使用して対処される課題である。
このアプローチに加えて、ソーシャルメディアプラットフォーム上でのオンライン憎悪に対応するためにNGOが採用する効果的なツールとしてカウンターナラティブが登場している。
そのため、現在、対談文の自動化手段として自然言語生成が研究されている。
しかし、NLGモデルのトレーニングに必要な既存のリソースは2ターンのインタラクション(ヘイトスピーチと応答としての逆の物語)に限られる一方、実生活では、インタラクションは複数のターンから構成される。
本論文では,19の異なる構成を用いて得られた機械生成対話に対する人間の専門家アノテータの介入を組み合わせた対話型データ収集のハイブリッド手法を提案する。
この研究の結果、DIALOCONANは、憎悪者とNGOオペレーターの間の3000以上の架空のマルチターン対話からなる最初のデータセットであり、6つのヘイトターゲットをカバーする。
関連論文リスト
- Self-Directed Turing Test for Large Language Models [56.64615470513102]
チューリングテストは、自然言語の会話においてAIが人間のような振る舞いを示すことができるかどうかを調べる。
従来のチューリングテストでは、各参加者が1回に1つのメッセージだけを送信する厳格な対話形式を採用している。
本稿では,バーストダイアログ形式を用いた自己指示チューリングテストを提案する。
論文 参考訳(メタデータ) (2024-08-19T09:57:28Z) - Interactive Conversational Head Generation [68.76774230274076]
対面会話における1つのインターロケータの振る舞いを合成するための新しい対話ヘッド生成ベンチマークを提案する。
長時間・複数回会話に参加可能なインターロカクタを自動的に合成する機能は不可欠であり、様々なアプリケーションにメリットを提供する。
論文 参考訳(メタデータ) (2023-07-05T08:06:26Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - SalesBot: Transitioning from Chit-Chat to Task-Oriented Dialogues [22.89699254073016]
ソーシャルチャットからタスク指向対話へのスムーズな移行は、ビジネスチャンスの引き金になる上で重要である。
本稿では,人間の介在なく多数の対話を自動生成するフレームワークを提案する。
公表されたデータは、将来の研究方向と商業活動のガイドとなる大きな可能性を秘めている。
論文 参考訳(メタデータ) (2022-04-22T09:31:13Z) - Leveraging Transformers for Hate Speech Detection in Conversational
Code-Mixed Tweets [36.29939722039909]
本稿では,HASOC 2021サブタスク2のためのMIDAS-IIITDチームによって提案されたシステムについて述べる。
これは、Hindi- Englishのコードミキシングされた会話からヘイトスピーチを検出することに焦点を当てた最初の共有タスクの1つである。
Indic-BERT,XLM-RoBERTa,Multilingual BERTのハード投票アンサンブルがマクロF1スコア0.7253を達成した。
論文 参考訳(メタデータ) (2021-12-18T19:27:33Z) - Smoothing Dialogue States for Open Conversational Machine Reading [70.83783364292438]
本稿では,2つの対話状態を1つのデコーダとブリッジ決定と質問生成でスムーズにすることで,効果的なゲーティング戦略を提案する。
OR-ShARCデータセットを用いた実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-08-28T08:04:28Z) - Generate, Prune, Select: A Pipeline for Counterspeech Generation against
Online Hate Speech [9.49544185939481]
オフザシェルフ自然言語生成(NLG)法は, 日常的, 反復的, 安全な応答を生成する点で制限されている。
本稿では,多様性と妥当性を効果的に向上する3モジュールパイプラインを設計する。
提案したパイプラインは,まず多様性を促進するために生成モデルを用いて様々な反音声候補を生成し,次にBERTモデルを用いて非文法的候補をフィルタリングし,最後に最も関連性の高い反音声応答を選択する。
論文 参考訳(メタデータ) (2021-06-03T06:54:03Z) - CloneBot: Personalized Dialogue-Response Predictions [0.0]
プロジェクトのタスクは、話者id、チャット履歴、発話クエリが与えられた場合に、会話中の応答発話を予測できるモデルを作成することだった。
モデルは各話者にパーソナライズされる。
このタスクは、人間のような方法で会話する音声ボットをライブ会話で構築するのに有用なツールである。
論文 参考訳(メタデータ) (2021-03-31T01:15:37Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
本研究では,言語モデリングのためのタスク指向対話データセットを,人間とマルチターンの9つに統合する。
事前学習時の対話動作をモデル化するために,ユーザトークンとシステムトークンをマスク付き言語モデルに組み込む。
論文 参考訳(メタデータ) (2020-04-15T04:09:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。