Quantum-classical approach to spin and charge pumping and the ensuing
radiation in THz spintronics: Example of ultrafast-light-driven Weyl
antiferromagnet Mn$_3$Sn
- URL: http://arxiv.org/abs/2211.03645v3
- Date: Tue, 11 Apr 2023 23:15:10 GMT
- Title: Quantum-classical approach to spin and charge pumping and the ensuing
radiation in THz spintronics: Example of ultrafast-light-driven Weyl
antiferromagnet Mn$_3$Sn
- Authors: Abhin Suresh, Branislav K. Nikolic
- Abstract summary: We show how fs light pulses generate spin and charge pumping and electromagnetic radiation by the latter.
By switching on and off LLG dynamics and SO couplings, we unravel which microscopic mechanism contribute the most to emitted THz radiation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interaction of fs light pulses with magnetic materials has been intensely
studied for more than two decades in order to understand ultrafast
demagnetization in single magnetic layers or THz emission from their bilayers
with nonmagnetic spin-orbit (SO) materials. Here we develop a multiscale
quantum-classical formalism -- where conduction electrons are described by
quantum master equation of the Lindblad type; classical dynamics of local
magnetization is described by the Landau-Lifshitz-Gilbert (LLG) equation; and
incoming light is described by classical vector potential while outgoing
electromagnetic radiation is computed using Jefimenko equations for retarded
electric and magnetic fields -- and apply it a bilayer of antiferromagnetic
Weyl semimetal Mn$_3$Sn with noncollinear local magnetization in contact with
SO-coupled nonmagnetic material. Our QME+LLG+Jefimenko scheme makes it possible
to understand how fs light pulse generates directly spin and charge pumping and
electromagnetic radiation by the latter, including both odd and even high
harmonics (of the pulse center frequency) up to order $n \le 7$. The directly
pumped spin current then exert spin torque on local magnetization whose
dynamics, in turn, pumps additional spin and charge currents radiating in the
THz range. By switching on and off LLG dynamics and SO couplings, we unravel
which microscopic mechanism contribute the most to emitted THz radiation --
charge pumping by local magnetization of Mn$_3$Sn in the presence of its
intrinsic SO coupling is far more important than standardly assumed (for other
types of magnetic layers) spin pumping and subsequent spin-to-charge conversion
within the neighboring nonmagnetic SO-coupled material.
Related papers
- Unconventional magnetism mediated by spin-phonon-photon coupling [0.0]
We predict a biquadratic long-range interaction between spins mediated by their coupling to phonons hybridized with vacuum photons into polaritons.
The resulting ordered state is reminiscent of superconductivity mediated by the exchange of virtual phonons.
arXiv Detail & Related papers (2024-05-15T10:58:03Z) - Magnetic polarons beyond linear spin-wave theory: Mesons dressed by
magnons [0.0]
We develop a quantitative theoretical formalism to describe magnetic polarons in the strong coupling regime.
We construct an effective Hamiltonian with weak coupling to the spin-wave excitations in the background.
Our work paves the way for exploring magnetic polarons out-of equilibrium or in frustrated systems.
arXiv Detail & Related papers (2024-01-31T19:14:17Z) - Scanning spin probe based on magnonic vortex quantum cavities [0.0]
We propose the realization of a nanoscale scanning electron paramagnetic resonance sensor using a vortex core in a thin-film disc.
The vortex core can be displaced by using external magnetic fields of a few mT, enabling EPR scanning microscopy with large spatial resolution.
Vortex nanocavities could also attain strong coupling to individual spin molecular qubits, with potential applications to mediate qubit-qubit interactions.
arXiv Detail & Related papers (2024-01-12T12:53:49Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Coupling a mobile hole to an antiferromagnetic spin background:
Transient dynamics of a magnetic polaron [0.0]
In this work, we use a cold-atom quantum simulator to directly observe the formation dynamics and subsequent spreading of individual magnetic polarons.
Measuring the density- and spin-resolved evolution of a single hole in a 2D Hubbard insulator with short-range antiferromagnetic correlations reveals fast initial delocalization and a dressing of the spin background.
Our work enables the study of out-of-equilibrium emergent phenomena in the Fermi-Hubbard model, one dopant at a time.
arXiv Detail & Related papers (2020-06-11T17:59:54Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.