論文の概要: A Method to Judge the Style of Classical Poetry Based on Pre-trained
Model
- arxiv url: http://arxiv.org/abs/2211.04657v1
- Date: Wed, 9 Nov 2022 03:11:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 16:02:39.857505
- Title: A Method to Judge the Style of Classical Poetry Based on Pre-trained
Model
- Title(参考訳): 事前学習モデルに基づく古典詩のスタイル判断法
- Authors: Ziyao Wang, Jiandong Zhang, Jun Ma
- Abstract要約: 本論文は、現在最も完璧な漢詩のデータセットを構築し、このデータセットに基づいて、BART-poem事前学習モデルを訓練し、一般に適用可能な詩風判断法を推し進めている。
実験の結果、テストされた詩文の判断結果は、基本的には以前の王朝の批判者による結論と一致し、清州氏の前衛的な判断を検証し、唐宋の詩文認識の課題を解き明かした。
- 参考スコア(独自算出の注目度): 13.899056358137287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the important topics in the research field of Chinese classical poetry
is to analyze the poetic style. By examining the relevant works of previous
dynasties, researchers judge a poetic style mostly by their subjective
feelings, and refer to the previous evaluations that have become a certain
conclusion. Although this judgment method is often effective, there may be some
errors. This paper builds the most perfect data set of Chinese classical poetry
at present, trains a BART-poem pre -trained model on this data set, and puts
forward a generally applicable poetry style judgment method based on this
BART-poem model, innovatively introduces in-depth learning into the field of
computational stylistics, and provides a new research method for the study of
classical poetry. This paper attempts to use this method to solve the problem
of poetry style identification in the Tang and Song Dynasties, and takes the
poetry schools that are considered to have a relatively clear and consistent
poetic style, such as the Hongzheng Qizi and Jiajing Qizi, Jiangxi poetic
school and Tongguang poetic school, as the research object, and takes the poems
of their representative poets for testing. Experiments show that the judgment
results of the tested poetry work made by the model are basically consistent
with the conclusions given by critics of previous dynasties, verify some
avant-garde judgments of Mr. Qian Zhongshu, and better solve the task of poetry
style recognition in the Tang and Song dynasties.
- Abstract(参考訳): 漢詩の研究分野における重要な話題の1つは、歌風の分析である。
研究者は、前王朝の関連作品を調べることで、主に主観的な感情から詩風を判断し、一定の結論に達した以前の評価を参照する。
この判断方法はしばしば有効であるが、いくつかの誤りがあるかもしれない。
本論文は、現在最も完璧な漢詩のデータセットを構築し、このデータセットに基づいてBART-poem事前学習モデルを訓練し、このBART-poemモデルに基づいて、一般的に適用可能な詩スタイル判断手法を提案し、計算形式学の分野に深層学習を革新的に導入し、古典詩研究の新しい研究手法を提供する。
本論では、唐・宋朝における詩体識別の問題にこの手法を応用し、香港吉子・江西歌学派・唐詩学派など、比較的明快で一貫した歌風とされる歌流を研究対象とし、代表的歌人の詩を試験対象とする。
実験の結果, テストされた詩文の判断結果は, 従来王朝の批判者による結論と基本的に一致し, 清州氏の前衛的な判断を検証し, 唐宋の詩文認識の課題をよりよく解決した。
関連論文リスト
- A Computational Approach to Style in American Poetry [19.41186389974801]
我々は,アメリカの詩のスタイルを評価し,詩集を相互に視覚化する手法を開発した。
質的な詩批評は、様々な正書法、構文、音韻の特徴を分析するメトリクスの開発を導くのに役立ちました。
本手法は,テキストの学術研究,詩に対する直感的な個人的反応の研究,およびお気に入りの詩に基づいた読者への推薦に有効である。
論文 参考訳(メタデータ) (2023-10-13T18:49:14Z) - Identifying the style by a qualified reader on a short fragment of
generated poetry [0.0]
私は3つの文字ベースのLSTMモデルをスタイル再現評価に使用しました。
これら3つのモデルは、有名なロシア語を話す詩人たちによって、テキストのコーパスで訓練された。
スタイルの定義の正確さは、評価者が詩人を暗記できる場合、増加する。
論文 参考訳(メタデータ) (2023-06-05T10:55:15Z) - SciMON: Scientific Inspiration Machines Optimized for Novelty [68.46036589035539]
文献に基づく新たな科学的方向を生成するために,ニューラルランゲージモデルを探索し,拡張する。
モデルが入力背景コンテキストとして使用される新しい設定で、劇的な出発をとっています。
本稿では,過去の科学的論文から「吸入」を抽出するモデリングフレームワークであるSciMONを紹介する。
論文 参考訳(メタデータ) (2023-05-23T17:12:08Z) - Generation of Chinese classical poetry based on pre-trained model [1.6114012813668934]
本稿では,主にBARTやその他の事前学習モデルを用いて,韻律的詩文を生成する。
一連のAI詩のチューリング問題を開発し、詩や詩を書く研究者のグループによってレビューされた。
著者が研究した詩文生成のモデルは、先進的な学者と区別できない作品を一般化している。
論文 参考訳(メタデータ) (2022-11-04T16:05:31Z) - PoeticTTS -- Controllable Poetry Reading for Literary Studies [21.29478270833139]
我々は、人間の参照的引用から韻律的な値をクローンして詩を再合成し、その後、微粒な韻律制御を用いて合成音声を操作する。
詩のTTSモデルを微調整することで、詩のイントネーションパターンを広範囲に捉え、韻律のクローニングと操作に有用であることがわかった。
論文 参考訳(メタデータ) (2022-07-11T13:15:27Z) - PoeLM: A Meter- and Rhyme-Controllable Language Model for Unsupervised
Poetry Generation [42.12348554537587]
形式詩は詩の韻律や韻律に厳格な制約を課している。
この種の詩を創作する以前の作品のほとんどは、既存の詩を監督に用いている。
本稿では,任意の韻律や韻律に従って詩を生成するための教師なしアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-24T17:09:55Z) - BACON: Deep-Learning Powered AI for Poetry Generation with Author
Linguistic Style Transfer [91.3755431537592]
本稿では,BACONについて述べる。BACONは,著者の言語スタイルを伝達する自動詩生成器のプロトタイプである。
有限状態機械、確率モデル、人工ニューラルネットワーク、深層学習の概念と技法を組み合わせて、任意の著者のスタイルで豊かな美的品質でオリジナルの詩を書く。
論文 参考訳(メタデータ) (2021-12-14T00:08:36Z) - CCPM: A Chinese Classical Poetry Matching Dataset [50.90794811956129]
本稿では,詩のマッチングによるモデルの意味的理解を評価するための新しい課題を提案する。
この課題は、現代漢訳の漢詩では、4人の候補者の中から1行の漢詩を選ばなければならない。
このデータセットを構築するために、まず中国古典詩と現代中国語の翻訳の並列データを得る。
論文 参考訳(メタデータ) (2021-06-03T16:49:03Z) - Generating Major Types of Chinese Classical Poetry in a Uniformed
Framework [88.57587722069239]
GPT-2に基づく漢詩の主要なタイプを生成するフレームワークを提案する。
予備的な結果は、この強化されたモデルが、形も内容も質の高い大型漢詩を生成できることを示している。
論文 参考訳(メタデータ) (2020-03-13T14:16:25Z) - MixPoet: Diverse Poetry Generation via Learning Controllable Mixed
Latent Space [79.70053419040902]
多様な要素を吸収し,多様なスタイルを創出し,多様性を促進する新しいモデルであるMixPoetを提案する。
半教師付き変分オートエンコーダに基づいて、我々のモデルは潜在空間をいくつかの部分空間に切り離し、それぞれが敵の訓練によって1つの影響因子に条件付けされる。
中国詩の実験結果は、MixPoetが3つの最先端モデルに対して多様性と品質の両方を改善していることを示している。
論文 参考訳(メタデータ) (2020-03-13T03:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。