論文の概要: Novel structural-scale uncertainty measures and error retention curves:
application to multiple sclerosis
- arxiv url: http://arxiv.org/abs/2211.04825v2
- Date: Fri, 11 Nov 2022 08:41:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 15:12:43.719568
- Title: Novel structural-scale uncertainty measures and error retention curves:
application to multiple sclerosis
- Title(参考訳): 新しい構造的不確実性尺度と誤差保持曲線:多発性硬化症への応用
- Authors: Nataliia Molchanova, Vatsal Raina, Andrey Malinin, Francesco La Rosa,
Henning Muller, Mark Gales, Cristina Granziera, Mara Graziani, Meritxell Bach
Cuadra
- Abstract要約: 磁気共鳴画像(MRI)における白質病変(WML)セグメンテーションの不確実性評価に焦点をあてる。
一方、ボクセルスケールのセグメンテーションエラーは、病変の誤行を引き起こすが、他方では、病変サイズの検出エラーは、間違った病変数を引き起こす。
本研究の目的は, セグメンテーションと病変検出に関する誤差をそれぞれ捉えるために, 異なるボクセルと病変スケールの不確実性対策の能力を比較することである。
- 参考スコア(独自算出の注目度): 9.295643448425182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on the uncertainty estimation for white matter lesions
(WML) segmentation in magnetic resonance imaging (MRI). On one side,
voxel-scale segmentation errors cause the erroneous delineation of the lesions;
on the other side, lesion-scale detection errors lead to wrong lesion counts.
Both of these factors are clinically relevant for the assessment of multiple
sclerosis patients. This work aims to compare the ability of different voxel-
and lesion-scale uncertainty measures to capture errors related to segmentation
and lesion detection, respectively. Our main contributions are (i) proposing
new measures of lesion-scale uncertainty that do not utilise voxel-scale
uncertainties; (ii) extending an error retention curves analysis framework for
evaluation of lesion-scale uncertainty measures. Our results obtained on the
multi-center testing set of 58 patients demonstrate that the proposed
lesion-scale measure achieves the best performance among the analysed measures.
All code implementations are provided at
https://github.com/NataliiaMolch/MS_WML_uncs
- Abstract(参考訳): 磁気共鳴画像(MRI)における白質病変(WML)セグメンテーションの不確実性の評価に焦点をあてる。
一方、ボクセルスケールのセグメンテーションエラーは、病変の誤行を引き起こすが、他方では、病変サイズの検出エラーは間違った病変数を引き起こす。
どちらの因子も多発性硬化症患者の診断に臨床的に有用である。
本研究の目的は,セグメンテーションと病変検出に関する誤りを捉えるために,異なるvoxeland病巣スケールの不確実性尺度の能力を比較することである。
私たちの主な貢献は
一 ボクセル規模の不確実性を利用しない病変規模不確実性の新しい措置を提案すること。
(ii)病変スケールの不確実性評価のための誤差保持曲線分析フレームワークの拡張
58例の多施設試験で得られた結果から, 提案した病変尺度は, 解析結果の中で最高の成績を示した。
すべてのコード実装はhttps://github.com/NataliiaMolch/MS_WML_uncsで提供される。
関連論文リスト
- Structural-Based Uncertainty in Deep Learning Across Anatomical Scales: Analysis in White Matter Lesion Segmentation [8.64414399041931]
不確実性定量化(英: Uncertainty Quantification、UQ)は、ホワイトマター病変(WML)セグメンテーションの文脈における、自動ディープラーニング(DL)ツールの信頼性の指標である。
我々は, 構造的予測の相違から, 病変や患者スケールの不確かさを定量化する尺度を開発した。
334人の患者を対象にした多心MRIデータセットの結果, 病変のモデル誤差や患者スケールをより効果的に把握できることが示唆された。
論文 参考訳(メタデータ) (2023-11-15T13:04:57Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
左室容積推定は各種心血管疾患の診断・管理に重要である。
近年の機械学習、特にU-Netのような畳み込みネットワークは、医療画像の自動セグメンテーションを促進している。
本研究では,LV容積予測におけるポストホック不確実性推定のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T13:44:55Z) - Improving Image-Based Precision Medicine with Uncertainty-Aware Causal
Models [3.5770353345663053]
ベイジアンディープラーニング(英語版)を用いて、いくつかの治療における現実的および対実的な結果に対する後部分布を推定する。
本モデルを用いて,多発性硬化症患者のMR脳画像の多施設データセットを用いて,今後新たなT2病変数を予測し,評価する。
論文 参考訳(メタデータ) (2023-05-05T20:08:40Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - The impact of using voxel-level segmentation metrics on evaluating
multifocal prostate cancer localisation [8.035409264165937]
Dice similarity coefficient (DSC) と Hausdorff distance (HD) は医用画像セグメンテーションの評価に広く用いられている。
本研究は、まず、前立腺がんの手術計画において、対象検出に使用されるものを適応する、新しい非対称検出指標を提案する。
今回我々は, DSCとHDの相互一致と相関について報告し, 2) ボクセルレベルDSCと病変レベルでのリコール制御精度について報告する。
論文 参考訳(メタデータ) (2022-03-30T15:57:20Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
そこで本研究では,病変からスライスまでのマッピング機能に基づく,病変レベルのコスト感受性損失と付加的なスライスレベルの損失を組み込んだ新しいPCa検出ネットワークを提案する。
1) 病変レベルFNRを0.19から0.10に, 病変レベルFPRを1.03から0.66に減らした。
論文 参考訳(メタデータ) (2021-06-04T09:51:27Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
我々は,モデル不連続な不確かさを定量化するベイズ変分フレームワークを提案する。
提案手法はMRIのアンダーサンプを用いた再建術の術後成績を示す。
論文 参考訳(メタデータ) (2021-02-12T18:08:14Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - Grading Loss: A Fracture Grade-based Metric Loss for Vertebral Fracture
Detection [58.984536305767996]
自動椎骨骨折検出のための表現学習型アプローチを提案する。
本稿では,Genantのフラクチャーグレーディングスキームを尊重する,学習表現のための新しいGrading Lossを提案する。
一般に利用可能なスピーンデータセットでは、提案された損失関数が81.5%のフラクチャー検出F1スコアを達成する。
論文 参考訳(メタデータ) (2020-08-18T10:03:45Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。