Improving Clinician Performance in Classification of EEG Patterns on the Ictal-Interictal-Injury Continuum using Interpretable Machine Learning
- URL: http://arxiv.org/abs/2211.05207v5
- Date: Wed, 25 Sep 2024 00:35:55 GMT
- Title: Improving Clinician Performance in Classification of EEG Patterns on the Ictal-Interictal-Injury Continuum using Interpretable Machine Learning
- Authors: Alina Jade Barnett, Zhicheng Guo, Jin Jing, Wendong Ge, Peter W. Kaplan, Wan Yee Kong, Ioannis Karakis, Aline Herlopian, Lakshman Arcot Jayagopal, Olga Taraschenko, Olga Selioutski, Gamaleldin Osman, Daniel Goldenholz, Cynthia Rudin, M. Brandon Westover,
- Abstract summary: In intensive care units (ICUs), critically ill patients are monitored with electroencephalograms (EEGs) to prevent serious brain injury.
Black box deep learning models are untrustworthy, difficult to troubleshoot, and lack accountability in real-world applications.
We propose a novel interpretable deep learning model that predicts the presence of harmful brainwave patterns.
- Score: 15.548202338334615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In intensive care units (ICUs), critically ill patients are monitored with electroencephalograms (EEGs) to prevent serious brain injury. The number of patients who can be monitored is constrained by the availability of trained physicians to read EEGs, and EEG interpretation can be subjective and prone to inter-observer variability. Automated deep learning systems for EEG could reduce human bias and accelerate the diagnostic process. However, black box deep learning models are untrustworthy, difficult to troubleshoot, and lack accountability in real-world applications, leading to a lack of trust and adoption by clinicians. To address these challenges, we propose a novel interpretable deep learning model that not only predicts the presence of harmful brainwave patterns but also provides high-quality case-based explanations of its decisions. Our model performs better than the corresponding black box model, despite being constrained to be interpretable. The learned 2D embedded space provides the first global overview of the structure of ictal-interictal-injury continuum brainwave patterns. The ability to understand how our model arrived at its decisions will not only help clinicians to diagnose and treat harmful brain activities more accurately but also increase their trust and adoption of machine learning models in clinical practice; this could be an integral component of the ICU neurologists' standard workflow.
Related papers
- Analyzing the Effect of $k$-Space Features in MRI Classification Models [0.0]
We have developed an explainable AI methodology tailored for medical imaging.
We employ a Convolutional Neural Network (CNN) that analyzes MRI scans across both image and frequency domains.
This approach not only enhances early training efficiency but also deepens our understanding of how additional features impact the model predictions.
arXiv Detail & Related papers (2024-09-20T15:43:26Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
Explainable artificial intelligence (XAI) plays an indispensable role in demystifying the decision-making processes of AI.
As they operate as "black boxes," with their reasoning obscured and inaccessible, there's an increased risk of misdiagnosis.
This shift towards transparency is not just beneficial -- it's a critical step towards responsible AI integration in healthcare.
arXiv Detail & Related papers (2024-03-23T02:15:23Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Collective Intelligent Strategy for Improved Segmentation of COVID-19
from CT [0.2062593640149623]
We propose a novel non-invasive tool, using deep learning and imaging, for delineating COVID-19 infection in lungs.
The Ensembling Attention-based Multi-scaled Convolution network (EAMC) exhibits high sensitivity and precision in outlining infected regions.
Its clinical significance lies in its unprecedented scope in providing low-cost decision-making for patients lacking specialized healthcare at remote locations.
arXiv Detail & Related papers (2022-12-23T11:24:29Z) - A Trustworthy Framework for Medical Image Analysis with Deep Learning [71.48204494889505]
TRUDLMIA is a trustworthy deep learning framework for medical image analysis.
It is anticipated that the framework will support researchers and clinicians in advancing the use of deep learning for dealing with public health crises including COVID-19.
arXiv Detail & Related papers (2022-12-06T05:30:22Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - A Novel TSK Fuzzy System Incorporating Multi-view Collaborative Transfer
Learning for Personalized Epileptic EEG Detection [20.11589208667256]
We propose a TSK fuzzy system-based epilepsy detection algorithm that integrates multi-view collaborative transfer learning.
The proposed method has the potential to detect epileptic EEG signals effectively.
arXiv Detail & Related papers (2021-11-11T12:15:55Z) - Demystifying Deep Learning Models for Retinal OCT Disease Classification
using Explainable AI [0.6117371161379209]
The adoption of various deep learning techniques is quite common as well as effective, and its statement is equally true when it comes to implementing it into the retina Optical Coherence Tomography sector.
These techniques have the black box characteristics that prevent the medical professionals to completely trust the results generated from them.
This paper proposes a self-developed CNN model which is comparatively smaller and simpler along with the use of Lime that introduces Explainable AI to the study.
arXiv Detail & Related papers (2021-11-06T13:54:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.