Improving Uncertainty-based Out-of-Distribution Detection for Medical
Image Segmentation
- URL: http://arxiv.org/abs/2211.05421v1
- Date: Thu, 10 Nov 2022 08:54:40 GMT
- Title: Improving Uncertainty-based Out-of-Distribution Detection for Medical
Image Segmentation
- Authors: Benjamin Lambert, Florence Forbes, Senan Doyle, Alan Tucholka and
Michel Dojat
- Abstract summary: Out-of-Distribution (OOD) images represent a significant challenge in the context of medical image analysis.
We show that methods relying on the predictive uncertainty of binary segmentation models often fails in detecting outlying inputs.
- Score: 1.1199585259018459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning models are easily disturbed by variations in the input images
that were not seen during training, resulting in unpredictable behaviours. Such
Out-of-Distribution (OOD) images represent a significant challenge in the
context of medical image analysis, where the range of possible abnormalities is
extremely wide, including artifacts, unseen pathologies, or different imaging
protocols. In this work, we evaluate various uncertainty frameworks to detect
OOD inputs in the context of Multiple Sclerosis lesions segmentation. By
implementing a comprehensive evaluation scheme including 14 sources of OOD of
various nature and strength, we show that methods relying on the predictive
uncertainty of binary segmentation models often fails in detecting outlying
inputs. On the contrary, learning to segment anatomical labels alongside
lesions highly improves the ability to detect OOD inputs.
Related papers
- Counterfactuals and Uncertainty-Based Explainable Paradigm for the Automated Detection and Segmentation of Renal Cysts in Computed Tomography Images: A Multi-Center Study [1.83277723272657]
Routine computed tomography (CT) scans often detect a wide range of renal cysts, some of which may be malignant.
Current segmentation methods, however, do not offer sufficient interpretability at the feature and pixel levels.
We developed an interpretable segmentation framework and validated it on a multi-centric dataset.
arXiv Detail & Related papers (2024-08-07T14:14:05Z) - MedIAnomaly: A comparative study of anomaly detection in medical images [26.319602363581442]
Anomaly detection (AD) aims at detecting abnormal samples that deviate from the expected normal patterns.
Despite numerous methods for medical AD, we observe a lack of a fair and comprehensive evaluation.
This paper builds a benchmark with unified comparison.
arXiv Detail & Related papers (2024-04-06T06:18:11Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Exploring Structure-Wise Uncertainty for 3D Medical Image Segmentation [0.06117371161379209]
Voxel-wise uncertainty is a useful visual marker for human experts.
We propose a framework to measure the structure-wise uncertainty and evaluate the impact of OOD data on the model performance.
arXiv Detail & Related papers (2022-11-01T06:53:00Z) - CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation [6.197149831796131]
We propose CRISP a ContRastive Image for uncertainty Prediction method.
At its core, CRISP implements a contrastive method to learn a joint latent space which encodes a distribution of valid segmentations.
We use this joint latent space to compare predictions to thousands of latent vectors and provide anatomically consistent uncertainty maps.
arXiv Detail & Related papers (2022-06-15T16:56:58Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Cross Chest Graph for Disease Diagnosis with Structural Relational
Reasoning [2.7148274921314615]
Locating lesions is important in the computer-aided diagnosis of X-ray images.
General weakly-supervised methods have failed to consider the characteristics of X-ray images.
We propose the Cross-chest Graph (CCG), which improves the performance of automatic lesion detection.
arXiv Detail & Related papers (2021-01-22T08:24:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.