論文の概要: Probabilistic thermal stability prediction through sparsity promoting
transformer representation
- arxiv url: http://arxiv.org/abs/2211.05698v1
- Date: Thu, 10 Nov 2022 17:05:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 14:38:46.766131
- Title: Probabilistic thermal stability prediction through sparsity promoting
transformer representation
- Title(参考訳): スパルシリティ促進トランス表現による確率的熱安定性予測
- Authors: Yevgen Zainchkovskyy, Jesper Ferkinghoff-Borg, Anja Bennett, Thomas
Egebjerg, Nikolai Lorenzen, Per Jr. Greisen, S{\o}ren Hauberg, Carsten
Stahlhut
- Abstract要約: 我々は機械学習(ML)による薬物設計に2倍の貢献をする。
まず,事前学習した変圧器モデルのペナル化を促進することで,疎結合のパワーを実証する。
第2に,確率的枠組みを用いて予測問題をフレーミングする能力を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-trained protein language models have demonstrated significant
applicability in different protein engineering task. A general usage of these
pre-trained transformer models latent representation is to use a mean pool
across residue positions to reduce the feature dimensions to further downstream
tasks such as predicting bio-physics properties or other functional behaviours.
In this paper we provide a two-fold contribution to machine learning (ML)
driven drug design. Firstly, we demonstrate the power of sparsity by promoting
penalization of pre-trained transformer models to secure more robust and
accurate melting temperature (Tm) prediction of single-chain variable fragments
with a mean absolute error of 0.23C. Secondly, we demonstrate the power of
framing our prediction problem in a probabilistic framework. Specifically, we
advocate for the need of adopting probabilistic frameworks especially in the
context of ML driven drug design.
- Abstract(参考訳): 事前訓練されたタンパク質言語モデルは、異なるタンパク質工学のタスクに顕著な応用性を示している。
これらの事前訓練されたトランスフォーマーモデルの一般的な用途は、残差位置を横切る平均プールを使用して特徴次元を減らし、生体物理特性の予測や他の機能的挙動の予測のような下流のタスクを行うことである。
本稿では機械学習(ML)による薬物設計への2倍の貢献について述べる。
まず, 既訓練変圧器モデルのペナル化を推進し, 平均絶対誤差0.23Cの単鎖可変フラグメントのより堅牢で正確な融解温度(Tm)の予測を行う。
第2に,確率的枠組みを用いて予測問題をフレーミングする能力を示す。
具体的には、特にMLによる薬物設計の文脈において、確率的枠組みを採用する必要性を主張する。
関連論文リスト
- Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
本稿では,分布外ケースに対する頑健な一般化性を有する動き予測のための解釈可能な生成モデルを提案する。
このモデルでは, 長期目的地の空間分布を推定することにより, 目標駆動動作予測を実現する。
動き予測データセットの実験は、適合したモデルが解釈可能で一般化可能であることを検証した。
論文 参考訳(メタデータ) (2024-03-10T04:16:04Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
本研究は、分子設計の課題を条件付き生成モデリングタスクとしてフレーミングすることによって検討する。
本研究では,(1)学習可能な事前分布を持つ潜伏ベクトル,(2)プロンプトとして潜伏ベクトルを用いる因果トランスフォーマーに基づく分子生成モデル,(3)潜在プロンプトを用いた分子の目標特性および/または制約値を予測する特性予測モデルからなる新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-02-27T03:33:23Z) - Learning Generative Vision Transformer with Energy-Based Latent Space
for Saliency Prediction [51.80191416661064]
本稿では,有意な物体検出に先立って,潜伏変数を持つ新しい視覚変換器を提案する。
ビジョントランスネットワークとエネルギーベース先行モデルの両方は、マルコフ連鎖モンテカルロによる最大推定を通じて共同で訓練される。
生成型視覚変換器により、画像から容易に画素単位の不確実性マップを得ることができ、画像から唾液濃度を予測するためのモデル信頼度を示す。
論文 参考訳(メタデータ) (2021-12-27T06:04:33Z) - Autoregressive Quantile Flows for Predictive Uncertainty Estimation [7.184701179854522]
高次元変数上の確率モデルの柔軟なクラスである自己回帰量子フローを提案する。
これらのモデルは、適切なスコアリングルールに基づいて、新しい目的を用いて訓練された自己回帰フローの例である。
論文 参考訳(メタデータ) (2021-12-09T01:11:26Z) - Transforming Autoregression: Interpretable and Expressive Time Series
Forecast [0.0]
本稿では,様々な研究方向からインスパイアされたモデルクラスである自己回帰変換モデル(ATM)を提案する。
ATMは半パラメトリック分布仮定と解釈可能なモデル仕様を用いて表現的分布予測を統一する。
ATMの理論的および実証的な評価により,複数のシミュレーションおよび実世界の予測データセット上でATMの特性を実証する。
論文 参考訳(メタデータ) (2021-10-15T17:58:49Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
安全クリティカルな機械学習アプリケーションでは、モデルを敵の攻撃から守ることが不可欠である。
意味的に意味のある入力変換に対して、ディープラーニングモデルの証明可能な保証を提供することが重要である。
我々はChernoff-Cramer境界に基づく新しい普遍確率的証明手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T12:46:04Z) - An Interpretable Probabilistic Model for Short-Term Solar Power
Forecasting Using Natural Gradient Boosting [0.0]
本稿では,高精度で信頼性が高く,鋭い予測を生成できる2段階確率予測フレームワークを提案する。
このフレームワークは、ポイント予測と予測間隔(PI)の両方について完全な透明性を提供する。
提案フレームワークの性能と適用性を強調するため,南ドイツにある2つのPV公園の実際のデータを用いている。
論文 参考訳(メタデータ) (2021-08-05T12:59:38Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Nonparametric Conditional Density Estimation In A Deep Learning
Framework For Short-Term Forecasting [0.34410212782758043]
多くの機械学習技術は、対象変数の条件分布の単一点予測を与える。
本研究では,条件分布全体を同時に推定し,柔軟に機械学習技術を組み込む技術を提案する。
論文 参考訳(メタデータ) (2020-08-17T22:31:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。