論文の概要: Spatial Temporal Graph Convolution with Graph Structure Self-learning
for Early MCI Detection
- arxiv url: http://arxiv.org/abs/2211.06161v1
- Date: Fri, 11 Nov 2022 12:29:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 17:06:33.570873
- Title: Spatial Temporal Graph Convolution with Graph Structure Self-learning
for Early MCI Detection
- Title(参考訳): 早期mci検出のためのグラフ構造自己学習による空間時間グラフ畳み込み
- Authors: Yunpeng Zhao, Fugen Zhou, Bin Guo, Bo Liu
- Abstract要約: 本稿では,EMCI検出のための新しいグラフ構造自己学習機構を備えた空間時空間グラフ畳み込みネットワークを提案する。
The Alzheimer's Disease Neuroimaging Initiative databaseの結果は、我々の手法が最先端のアプローチより優れていることを示している。
- 参考スコア(独自算出の注目度): 9.11430195887347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have been successfully applied to early mild
cognitive impairment (EMCI) detection, with the usage of elaborately designed
features constructed from blood oxygen level-dependent (BOLD) time series.
However, few works explored the feasibility of using BOLD signals directly as
features. Meanwhile, existing GNN-based methods primarily rely on hand-crafted
explicit brain topology as the adjacency matrix, which is not optimal and
ignores the implicit topological organization of the brain. In this paper, we
propose a spatial temporal graph convolutional network with a novel graph
structure self-learning mechanism for EMCI detection. The proposed spatial
temporal graph convolution block directly exploits BOLD time series as input
features, which provides an interesting view for rsfMRI-based preclinical AD
diagnosis. Moreover, our model can adaptively learn the optimal topological
structure and refine edge weights with the graph structure self-learning
mechanism. Results on the Alzheimer's Disease Neuroimaging Initiative (ADNI)
database show that our method outperforms state-of-the-art approaches.
Biomarkers consistent with previous studies can be extracted from the model,
proving the reliable interpretability of our method.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、血液酸素レベル依存(BOLD)時系列から構築された精巧に設計された特徴を用いて、早期軽度認知障害(EMCI)検出に成功している。
しかし、BOLD信号を直接機能として使う可能性を探る研究はほとんどなかった。
一方、既存のGNNベースの手法は、主に手作りの明示的な脳のトポロジーに依存しており、これは最適ではなく、脳の暗黙的なトポロジー構造を無視している。
本稿では,EMCI検出のための新しいグラフ構造自己学習機構を備えた空間時間グラフ畳み込みネットワークを提案する。
提案する空間時空間グラフ畳み込みブロックは,BOLD時系列を入力特徴として直接利用し,RSfMRIによる前臨床AD診断における興味深い視点を提供する。
さらに, 最適位相構造を適応的に学習し, 辺重みをグラフ構造自己学習機構で洗練することができる。
The Alzheimer's Disease Neuroimaging Initiative (ADNI) databaseの結果,本手法は最先端のアプローチよりも優れていた。
従来の研究と整合したバイオマーカーをモデルから抽出し,本手法の信頼性を実証する。
関連論文リスト
- Topology-Aware Graph Augmentation for Predicting Clinical Trajectories in Neurocognitive Disorders [27.280927277680515]
本稿では、一般化可能なエンコーダをトレーニングするためのプレテキストモデルと、下流タスクを実行するためのタスク固有モデルからなるトポロジ対応グラフ拡張(TGA)フレームワークを提案する。
1,688 fMRIでの実験では、TGAがいくつかの最先端の手法より優れていることが示唆された。
論文 参考訳(メタデータ) (2024-10-31T19:37:20Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
総合的な脳コネクトームの構築は、静止状態fMRI(rs-fMRI)解析において基本的な重要性が証明されている。
我々は脳ネットワークを有向非循環グラフ(DAG)としてモデル化し、脳領域間の直接因果関係を発見する。
本研究では,効率的な接続性を推定し,rs-fMRI時系列を分類するために,時空間DAG畳み込みネットワーク(ST-DAGCN)を提案する。
論文 参考訳(メタデータ) (2023-12-16T04:31:51Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network [7.876789380671075]
スパースDAGの学習を目的としたスコアに基づくグラフニューラルネットワーク手法を提案する。
グラフニューラルネットワークを用いた手法は,動的ベイジアンネットワーク推論を用いた他の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2023-01-28T02:49:13Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
本稿では,動的適応時間グラフ畳み込み(DASTGCN)モデルを提案する。
提案手法により,レイヤワイドグラフ構造学習モジュールによる脳領域間の動的接続のエンドツーエンド推論が可能となる。
我々は,安静時機能スキャンを用いて,英国ビオバンクのパイプラインを年齢・性別分類タスクとして評価した。
論文 参考訳(メタデータ) (2021-09-26T07:19:47Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
カルチャーネットワーク(GCN)は、スケルトンをグラフとしてモデル化することで、スケルトンに基づく人間の行動認識の性能を約束する。
最近提案されたG時間に基づく手法のほとんどは、ネットワークの各層におけるグラフ構造を学習することで、性能を向上させる。
論文 参考訳(メタデータ) (2020-11-07T19:03:04Z) - Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis [11.85489505372321]
BOLD時系列の短いサブシーケンスに基づいて、時空間グラフ畳み込みネットワーク(ST-GCN)を訓練し、機能接続の非定常特性をモデル化する。
St-GCNはBOLD信号に基づいて性別や年齢を予測する一般的な手法よりもはるかに正確である。
論文 参考訳(メタデータ) (2020-03-24T01:56:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。