Phase-Shifting Coder: Predicting Accurate Orientation in Oriented Object
Detection
- URL: http://arxiv.org/abs/2211.06368v1
- Date: Fri, 11 Nov 2022 17:31:25 GMT
- Title: Phase-Shifting Coder: Predicting Accurate Orientation in Oriented Object
Detection
- Authors: Yi Yu and Feipeng Da
- Abstract summary: A novel differentiable angle coder named phase-shifting coder (PSC) is proposed to accurately predict the orientation of objects.
We provide a unified framework for various periodic fuzzy problems in oriented object detection.
Visual analysis and experiments on three datasets prove the effectiveness and the potentiality of our approach.
- Score: 10.99534239215483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the vigorous development of computer vision, oriented object detection
has gradually been featured. In this paper, a novel differentiable angle coder
named phase-shifting coder (PSC) is proposed to accurately predict the
orientation of objects, along with a dual-frequency version PSCD. By mapping
rotational periodicity of different cycles into phase of different frequencies,
we provide a unified framework for various periodic fuzzy problems in oriented
object detection. Upon such framework, common problems in oriented object
detection such as boundary discontinuity and square-like problems are elegantly
solved in a unified form. Visual analysis and experiments on three datasets
prove the effectiveness and the potentiality of our approach. When facing
scenarios requiring high-quality bounding boxes, the proposed methods are
expected to give a competitive performance. The codes are publicly available at
https://github.com/open-mmlab/mmrotate.
Related papers
- OrientedFormer: An End-to-End Transformer-Based Oriented Object Detector in Remote Sensing Images [26.37802649901314]
Oriented object detection in remote sensing images is a challenging task due to objects being distributed in multi-orientation.
We propose an end-to-end transformer-based oriented object detector consisting of three dedicated modules to address these issues.
Compared with previous end-to-end detectors, the OrientedFormer gains 1.16 and 1.21 AP$_50$ on DIOR-R and DOTA-v1.0 respectively, while reducing training epochs from 3$times$ to 1$times$.
arXiv Detail & Related papers (2024-09-29T10:36:33Z) - DPDETR: Decoupled Position Detection Transformer for Infrared-Visible Object Detection [42.70285733630796]
Infrared-visible object detection aims to achieve robust object detection by leveraging the complementary information of infrared and visible image pairs.
fusing misalignment complementary features is difficult, and current methods cannot accurately locate objects in both modalities under misalignment conditions.
We propose a Decoupled Position Detection Transformer to address these problems.
Experiments on DroneVehicle and KAIST datasets demonstrate significant improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2024-08-12T13:05:43Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
We present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection.
First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network.
Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match.
arXiv Detail & Related papers (2023-07-01T13:53:14Z) - Rethinking Boundary Discontinuity Problem for Oriented Object Detection [42.136448033031634]
We show that even state-of-the-art IoU-like methods fail to solve the boundary discontinuity problem.
In existing IoU-like methods, the model essentially attempts to fit the angular relationship between box and object, where the break point at angular boundary makes the predictions highly unstable.
We propose a dual-optimization paradigm for angles. We decouple reversibility and joint-optim from single smoothing function into two distinct entities, which for the first time achieves the objectives of both correcting angular boundary and blending angle with other parameters.
arXiv Detail & Related papers (2023-05-17T09:04:22Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework.
Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark.
arXiv Detail & Related papers (2023-04-10T11:10:42Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
We present Adaptive Rotated Convolution (ARC) module to handle rotated object detection problem.
In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images.
The proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.
arXiv Detail & Related papers (2023-03-14T11:53:12Z) - Multitask AET with Orthogonal Tangent Regularity for Dark Object
Detection [84.52197307286681]
We propose a novel multitask auto encoding transformation (MAET) model to enhance object detection in a dark environment.
In a self-supervision manner, the MAET learns the intrinsic visual structure by encoding and decoding the realistic illumination-degrading transformation.
We have achieved the state-of-the-art performance using synthetic and real-world datasets.
arXiv Detail & Related papers (2022-05-06T16:27:14Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - Align Deep Features for Oriented Object Detection [40.28244152216309]
We propose a single-shot Alignment Network (S$2$A-Net) consisting of two modules: a Feature Alignment Module (FAM) and an Oriented Detection Module (ODM)
The FAM can generate high-quality anchors with an Anchor Refinement Network and adaptively align the convolutional features according to the anchor boxes with a novel Alignment Convolution.
The ODM first adopts active rotating filters to encode the orientation information and then produces orientation-sensitive and orientation-invariant features to alleviate the inconsistency between classification score and localization accuracy.
arXiv Detail & Related papers (2020-08-21T09:55:13Z) - On the Arbitrary-Oriented Object Detection: Classification based
Approaches Revisited [94.5455251250471]
We first show that the boundary problem suffered in existing dominant regression-based rotation detectors, is caused by angular periodicity or corner ordering.
We transform the angular prediction task from a regression problem to a classification one.
For the resulting circularly distributed angle classification problem, we first devise a Circular Smooth Label technique to handle the periodicity of angle and increase the error tolerance to adjacent angles.
arXiv Detail & Related papers (2020-03-12T03:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.