Rethinking Boundary Discontinuity Problem for Oriented Object Detection
- URL: http://arxiv.org/abs/2305.10061v2
- Date: Fri, 22 Mar 2024 03:07:25 GMT
- Title: Rethinking Boundary Discontinuity Problem for Oriented Object Detection
- Authors: Hang Xu, Xinyuan Liu, Haonan Xu, Yike Ma, Zunjie Zhu, Chenggang Yan, Feng Dai,
- Abstract summary: We show that even state-of-the-art IoU-like methods fail to solve the boundary discontinuity problem.
In existing IoU-like methods, the model essentially attempts to fit the angular relationship between box and object, where the break point at angular boundary makes the predictions highly unstable.
We propose a dual-optimization paradigm for angles. We decouple reversibility and joint-optim from single smoothing function into two distinct entities, which for the first time achieves the objectives of both correcting angular boundary and blending angle with other parameters.
- Score: 42.136448033031634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Oriented object detection has been developed rapidly in the past few years, where rotation equivariance is crucial for detectors to predict rotated boxes. It is expected that the prediction can maintain the corresponding rotation when objects rotate, but severe mutation in angular prediction is sometimes observed when objects rotate near the boundary angle, which is well-known boundary discontinuity problem. The problem has been long believed to be caused by the sharp loss increase at the angular boundary, and widely used joint-optim IoU-like methods deal with this problem by loss-smoothing. However, we experimentally find that even state-of-the-art IoU-like methods actually fail to solve the problem. On further analysis, we find that the key to solution lies in encoding mode of the smoothing function rather than in joint or independent optimization. In existing IoU-like methods, the model essentially attempts to fit the angular relationship between box and object, where the break point at angular boundary makes the predictions highly unstable.To deal with this issue, we propose a dual-optimization paradigm for angles. We decouple reversibility and joint-optim from single smoothing function into two distinct entities, which for the first time achieves the objectives of both correcting angular boundary and blending angle with other parameters.Extensive experiments on multiple datasets show that boundary discontinuity problem is well-addressed. Moreover, typical IoU-like methods are improved to the same level without obvious performance gap. The code is available at https://github.com/hangxu-cv/cvpr24acm.
Related papers
- ABFL: Angular Boundary Discontinuity Free Loss for Arbitrary Oriented
Object Detection in Aerial Images [0.14504054468850663]
The angular boundary free loss (ABFL) aims to solve the angular boundary discontinuity problem when detecting oriented objects.
ABFL provides a simple and effective solution for various periodic boundary discontinuities caused by rotational symmetry in AOOD tasks.
arXiv Detail & Related papers (2023-11-21T03:03:22Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - Phase-Shifting Coder: Predicting Accurate Orientation in Oriented Object
Detection [10.99534239215483]
A novel differentiable angle coder named phase-shifting coder (PSC) is proposed to accurately predict the orientation of objects.
We provide a unified framework for various periodic fuzzy problems in oriented object detection.
Visual analysis and experiments on three datasets prove the effectiveness and the potentiality of our approach.
arXiv Detail & Related papers (2022-11-11T17:31:25Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Rethinking Rotated Object Detection with Gaussian Wasserstein Distance
Loss [111.8807588392563]
Boundary discontinuity and its inconsistency to the final detection metric have been the bottleneck for rotating detection regression loss design.
We propose a novel regression loss based on Gaussian Wasserstein distance as a fundamental approach to solve the problem.
arXiv Detail & Related papers (2021-01-28T12:04:35Z) - Align Deep Features for Oriented Object Detection [40.28244152216309]
We propose a single-shot Alignment Network (S$2$A-Net) consisting of two modules: a Feature Alignment Module (FAM) and an Oriented Detection Module (ODM)
The FAM can generate high-quality anchors with an Anchor Refinement Network and adaptively align the convolutional features according to the anchor boxes with a novel Alignment Convolution.
The ODM first adopts active rotating filters to encode the orientation information and then produces orientation-sensitive and orientation-invariant features to alleviate the inconsistency between classification score and localization accuracy.
arXiv Detail & Related papers (2020-08-21T09:55:13Z) - On the Arbitrary-Oriented Object Detection: Classification based
Approaches Revisited [94.5455251250471]
We first show that the boundary problem suffered in existing dominant regression-based rotation detectors, is caused by angular periodicity or corner ordering.
We transform the angular prediction task from a regression problem to a classification one.
For the resulting circularly distributed angle classification problem, we first devise a Circular Smooth Label technique to handle the periodicity of angle and increase the error tolerance to adjacent angles.
arXiv Detail & Related papers (2020-03-12T03:23:54Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-02-29T06:24:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.