論文の概要: Explainable Artificial Intelligence: Precepts, Methods, and
Opportunities for Research in Construction
- arxiv url: http://arxiv.org/abs/2211.06579v1
- Date: Sat, 12 Nov 2022 05:47:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 17:59:38.393064
- Title: Explainable Artificial Intelligence: Precepts, Methods, and
Opportunities for Research in Construction
- Title(参考訳): 説明可能な人工知能:概念、方法、および建設研究の機会
- Authors: Peter ED Love, Weili Fang, Jane Matthews, Stuart Porter, Hanbin Luo,
and Lieyun Ding
- Abstract要約: 我々は,建設におけるその可能性に対する意識を高めるために,XAIの物語的レビューを提供する。
利害関係者のデシダラタとデータと情報融合に焦点を当てた将来のXAI研究の機会を特定し,議論する。
- 参考スコア(独自算出の注目度): 1.2622634782102324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable artificial intelligence has received limited attention in
construction despite its growing importance in various other industrial
sectors. In this paper, we provide a narrative review of XAI to raise awareness
about its potential in construction. Our review develops a taxonomy of the XAI
literature comprising its precepts and approaches. Opportunities for future XAI
research focusing on stakeholder desiderata and data and information fusion are
identified and discussed. We hope the opportunities we suggest stimulate new
lines of inquiry to help alleviate the scepticism and hesitancy toward AI
adoption and integration in construction.
- Abstract(参考訳): 説明可能な人工知能は、他の産業分野での重要性が増しているにもかかわらず、建設において限られた注目を集めている。
本稿では,建設におけるその可能性に対する意識を高めるために,XAIについて概説する。
本総説では,XAI文献の規範とアプローチを含む分類法を論じる。
利害関係者のデシダラタとデータと情報融合に焦点を当てた将来のXAI研究の機会を特定し,議論する。
我々は、AIの採用と建設における統合に対する懐疑論とためらいを和らげるために、新たな調査ラインを刺激する機会を期待する。
関連論文リスト
- Cutting Through the Confusion and Hype: Understanding the True Potential of Generative AI [0.0]
本稿では,生成型AI(genAI)の微妙な景観について考察する。
それは、Large Language Models (LLMs)のようなニューラルネットワークベースのモデルに焦点を当てている。
論文 参考訳(メタデータ) (2024-10-22T02:18:44Z) - Explainable Generative AI (GenXAI): A Survey, Conceptualization, and Research Agenda [1.8592384822257952]
我々は、XAIがGenAIの台頭とともに重要になった理由とその説明可能性研究の課題について詳述する。
私たちはまた、検証可能性、対話性、セキュリティ、コストといった側面をカバーし、説明が満たすべき新しいデシラタも披露します。
論文 参考訳(メタデータ) (2024-04-15T08:18:16Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - Generative AI in the Construction Industry: Opportunities & Challenges [2.562895371316868]
建設部門におけるジェネレーティブAI(GenAI)導入の機会と課題を調査する研究は、現在進行中である。
本研究は、文献における反映された知覚を掘り下げ、プログラムベースのワードクラウドと周波数分析を用いて産業的知覚を分析する。
本稿では,概念的GenAI実装フレームワークを推奨し,実践的勧告を提供し,今後の研究課題を要約し,GenAIの今後の研究展開を促進するための基礎文献を構築する。
論文 参考訳(メタデータ) (2023-09-19T18:20:49Z) - Explainable Artificial Intelligence in Construction: The Content,
Context, Process, Outcome Evaluation Framework [1.3375143521862154]
我々は、XAIの採用と効果的な管理を正当化するために使用できるコンテンツ、コンテキスト、プロセス、成果評価フレームワークを開発する。
我々の新しいフレームワークは概念的だが、建設組織がXAIのビジネス価値と利益の実現に向けて進むための参考枠を提供する。
論文 参考訳(メタデータ) (2022-11-12T03:50:14Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
本章は, コンクリート材料用AI研究の主目的と知識構造を明らかにすることを目的としている。
まず、1990年から2020年にかけて発行された389の雑誌記事が、ウェブ・オブ・サイエンスから検索された。
キーワード共起分析やドキュメント共起分析などのサイエントメトリックツールを用いて,研究分野の特徴と特徴を定量化した。
論文 参考訳(メタデータ) (2022-09-17T18:24:56Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
本稿では、既存の文献の参加と現在の実践の実証分析を通じて、AI設計における「参加的転換」を掘り下げることを目的としている。
本稿では,本論文の文献合成と実証研究に基づいて,AI設計への参加的アプローチを解析するための概念的枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-01T17:57:04Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - What Do We Want From Explainable Artificial Intelligence (XAI)? -- A
Stakeholder Perspective on XAI and a Conceptual Model Guiding
Interdisciplinary XAI Research [0.8707090176854576]
説明可能性アプローチの主な目的は、人工システムに関する特定の関心、目標、期待、ニーズ、および要求を満たすことです。
ステークホルダーのデシデラタを満たすという目標を達成するための説明可能性アプローチがどうあるべきかは、しばしば不明である。
論文 参考訳(メタデータ) (2021-02-15T19:54:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。