論文の概要: Drug-target affinity prediction method based on consistent expression of
heterogeneous data
- arxiv url: http://arxiv.org/abs/2211.06792v1
- Date: Sun, 13 Nov 2022 02:58:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 20:03:20.238376
- Title: Drug-target affinity prediction method based on consistent expression of
heterogeneous data
- Title(参考訳): 不均一データの一貫した表現に基づく薬物標的親和性予測法
- Authors: Boyuan Liu
- Abstract要約: 深層学習モデルを用いた薬物-標的結合親和性予測手法を提案する。
提案モデルでは,DAVISおよびKIBAデータセット上での薬物-標的結合親和性予測の精度と有効性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The first step in drug discovery is finding drug molecule moieties with
medicinal activity against specific targets. Therefore, it is crucial to
investigate the interaction between drug-target proteins and small chemical
molecules. However, traditional experimental methods for discovering potential
small drug molecules are labor-intensive and time-consuming. There is currently
a lot of interest in building computational models to screen small drug
molecules using drug molecule-related databases. In this paper, we propose a
method for predicting drug-target binding affinity using deep learning models.
This method uses a modified GRU and GNN to extract features from the
drug-target protein sequences and the drug molecule map, respectively, to
obtain their feature vectors. The combined vectors are used as vector
representations of drug-target molecule pairs and then fed into a fully
connected network to predict drug-target binding affinity. This proposed model
demonstrates its accuracy and effectiveness in predicting drug-target binding
affinity on the DAVIS and KIBA datasets.
- Abstract(参考訳): 創薬の最初のステップは、特定の標的に対する薬効を有する薬物分子の運動を見つけることである。
したがって、薬物標的タンパク質と小さな化学分子の相互作用を調べることが重要である。
しかしながら、潜在的に小さな薬物分子を発見するための従来の実験方法は、労働集約的で時間を要する。
現在、薬物分子関連データベースを用いて小さな薬物分子をスクリーニングする計算モデルの構築に多くの関心がある。
本稿では,深層学習モデルを用いた薬物-標的結合親和性予測手法を提案する。
本発明の方法は、GRUおよびGNNを用いて、医薬品標的タンパク質配列と薬物分子マップからそれぞれ特徴を抽出し、特徴ベクトルを得る。
組み合わせたベクターは、薬物標的分子対のベクター表現として使われ、薬物標的結合親和性を予測するために完全に連結されたネットワークに供給される。
本モデルでは,DAVISおよびKIBAデータセット上での薬物-標的結合親和性予測の精度と有効性を示す。
関連論文リスト
- GramSeq-DTA: A grammar-based drug-target affinity prediction approach fusing gene expression information [1.2289361708127877]
薬物や標的の構造情報と化学摂動情報を統合するGramSeq-DTAを提案する。
我々の手法は、広く使われているDTAデータセットで検証された場合、現在の最先端のDTA予測モデルよりも優れている。
論文 参考訳(メタデータ) (2024-11-03T03:17:09Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
既存の方法は、DTI予測中にグローバルなタンパク質情報を利用することができない。
ローカルおよびグローバルなタンパク質情報を取得するために、クロスフィールド情報融合戦略が採用されている。
SiamDTI予測法は、新規薬物や標的に対する他の最先端(SOTA)法よりも高い精度を達成する。
論文 参考訳(メタデータ) (2024-05-23T13:25:20Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
薬物発見の鍵となる側面は、新規な薬物標的相互作用(DT)の同定である。
タンパク質-リガンド相互作用は結合親和性として知られる結合強度の連続性を示す。
性能向上のための新しい改良を提案する。
論文 参考訳(メタデータ) (2023-10-06T05:00:25Z) - Target Specific De Novo Design of Drug Candidate Molecules with Graph Transformer-based Generative Adversarial Networks [0.0]
薬物候補分子のデノボ設計のためのエンド・ツー・エンド生成システムであるDr.GENを提案する。
このシステムは、薬物のような化合物と標的特異的な生物活性分子の大規模なデータセットを用いて訓練される。
オープンアクセスされた薬物遺伝子を用いて、他の薬剤性タンパク質のモデルを容易に訓練することができる。
論文 参考訳(メタデータ) (2023-02-15T18:59:27Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Energy-based Generative Models for Target-specific Drug Discovery [7.509129971169722]
我々は, 目標特異的な薬物発見のためのエネルギーベース確率モデルを開発した。
その結果,提案したTagMolは実分子と類似の結合親和性を持つ分子を生成できることが示唆された。
論文 参考訳(メタデータ) (2022-12-05T16:41:36Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
標的タンパク質の構造に基づくデノボ薬物の設計は、新規な薬物候補を提供することができる。
そこで本研究では,特定のターゲットに対して,対象薬物をスクラッチから直接生成できるTamGentという生成ソリューションを提案する。
論文 参考訳(メタデータ) (2022-08-30T09:32:39Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Associative Learning Mechanism for Drug-Target Interaction Prediction [6.107658437700639]
薬物-標的親和性(DTA)は薬物-標的相互作用(DTI)の強さを表す
従来の手法では、DTA予測プロセスの解釈可能性に欠けていた。
本稿では,対話型学習と自動エンコーダ機構を備えたDTA予測手法を提案する。
論文 参考訳(メタデータ) (2022-05-24T14:25:28Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
本稿では,3方向トランスフォーマーアーキテクチャを用いて分子間情報をモデル化する手法を提案する。
分子間グラフ変換器(IGT)は、それぞれ、結合活性と結合ポーズ予測の2番目のベストに対して、最先端のアプローチを9.1%と20.5%で上回っている。
IGTはSARS-CoV-2に対して有望な薬物スクリーニング能力を示す。
論文 参考訳(メタデータ) (2021-10-14T13:28:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。