論文の概要: What would Harry say? Building Dialogue Agents for Characters in a Story
- arxiv url: http://arxiv.org/abs/2211.06869v1
- Date: Sun, 13 Nov 2022 10:16:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 16:02:45.508411
- Title: What would Harry say? Building Dialogue Agents for Characters in a Story
- Title(参考訳): ハリーは何て言う?
物語の登場人物のための対話エージェントの構築
- Authors: Nuo Chen, Yan Wang, Haiyun Jiang, Deng Cai, Ziyang Chen and Jia Li
- Abstract要約: HPDは、シーン、キャラクター属性、キャラクターの関係など、小説『ハリー・ポッター』に関する豊富な背景情報を提供している。
HPDにおける各対話セッションは異なる背景に相関し、ストーリーラインは背景がどのように変化するかを決定する。
我々は,Harry Potterのような応答をいかに生み出すかを決定するために,自動測定と人的計測の両方の基準線を評価した。
- 参考スコア(独自算出の注目度): 40.868564636394005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present HPD: Harry Potter Dialogue Dataset to facilitate the study of
building dialogue agents for characters in a story. It differs from existing
dialogue datasets in two aspects: 1) HPD provides rich background information
about the novel Harry Potter, including scene, character attributes, and
character relations; 2) All these background information will change as the
story goes on. In other words, each dialogue session in HPD correlates to a
different background, and the storyline determines how the background changes.
We evaluate some baselines (e.g., GPT-2, BOB) on both automatic and human
metrics to determine how well they can generate Harry Potter-like responses.
Experimental results indicate that although the generated responses are fluent
and relevant to the dialogue history, they are remained to sound out of
character for Harry, indicating there is a large headroom for future studies.
Our dataset is available.
- Abstract(参考訳): ハリー・ポッター対話データセット (harry potter dialogue dataset) は,物語中の登場人物のための対話エージェント構築の研究を容易にする。
既存の対話データセットとは2つの点で異なる。
1) hpdは,シーン,キャラクタ属性,キャラクタリレーションなど,小説のハリー・ポッターに関する豊富な背景情報を提供する。
2) これらの背景情報はストーリーが進むにつれて変化します。
言い換えれば、HPDの各対話セッションは異なる背景に相関し、ストーリーラインは背景がどのように変化するかを決定する。
我々は,Harry Potterのような応答をいかに生成できるかを判断するために,自動測定と人的計測の両方に基づいてベースライン(GPT-2,BOBなど)を評価する。
実験の結果, 生成した応答は会話履歴に精通しており, 対話履歴に関係しているものの, ハリーの性格の欠如は認められず, 将来研究のための大きなヘッドルームが存在することが示唆された。
私たちのデータセットは利用可能です。
関連論文リスト
- What if Red Can Talk? Dynamic Dialogue Generation Using Large Language Models [0.0]
本稿では,大規模言語モデル(LLM)を用いて動的かつ文脈的に適切な文字相互作用を生成する対話フィラーフレームワークを提案する。
The Final Fantasy VII Remake and Pokemonの環境でこのフレームワークをテストする。
本研究の目的は,よりニュアンスの高いフィラーダイアログ作成を支援することであり,それによってプレイヤーの没入感を高め,RPG体験の全般的向上を図ることである。
論文 参考訳(メタデータ) (2024-07-29T19:12:18Z) - PersonalityChat: Conversation Distillation for Personalized Dialog
Modeling with Facts and Traits [5.447308344436046]
PersonalityChatは、人気のPersonaChatデータセットに基づいた合成会話データセットである。
生成対話モデルの特質に基づくパーソナライズには,性格特性ラベルが有効であることを示す。
論文 参考訳(メタデータ) (2024-01-14T20:35:33Z) - CharacterGLM: Customizing Chinese Conversational AI Characters with
Large Language Models [66.4382820107453]
本稿では,ChatGLM上に構築されたモデルである characterGLM について紹介する。
我々のキャラクタGLMは文字ベースの対話(CharacterDial)を生成するために設計されており、人間固有の社会的欲求と感情的欲求を満たすための文字カスタマイズを備えた対話型AIシステムを実現することを目的としている。
論文 参考訳(メタデータ) (2023-11-28T14:49:23Z) - BotChat: Evaluating LLMs' Capabilities of Having Multi-Turn Dialogues [72.65163468440434]
本報告では,人間型マルチターンチャットのための既存大規模言語モデルの予備的評価を行う。
そこで我々は,ChatSEEDに基づくマルチターン対話を発話によって生成する大規模言語モデル(LLM)を提案する。
GPT-4は優れた品質の人型多元対話を生成できるが、その性能は著しく上回っている。
論文 参考訳(メタデータ) (2023-10-20T16:53:51Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
我々は、よりパーソナライズされ魅力的な応答を提供するために、新しい言語的キューに基づく思考の連鎖(textitCue-CoT)を提案する。
中国語と英語の6つのデータセットからなる詳細な対話質問を用いたベンチマークを構築した。
実験により,提案手法は,すべてのデータセットにおいて,テクステルパーフルネスとテクスチタアクセプタビリティの両方の観点から,標準的プロンプト法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-19T16:27:43Z) - SuperDialseg: A Large-scale Dataset for Supervised Dialogue Segmentation [55.82577086422923]
文書地上対話の助けを借りて,対話のセグメンテーションポイントを実現可能な定義を提供する。
我々は,9,478の対話を含むSuperDialsegと呼ばれる大規模教師付きデータセットをリリースする。
また、対話セグメンテーションタスクの5つのカテゴリにまたがる18のモデルを含むベンチマークも提供する。
論文 参考訳(メタデータ) (2023-05-15T06:08:01Z) - A Mixture-of-Expert Approach to RL-based Dialogue Management [56.08449336469477]
我々は、強化学習を用いて、近視性(一般的な発話の出力)を回避し、全体的なユーザ満足度を最大化する対話エージェントを開発する。
既存のRLアプローチのほとんどは、単語レベルでエージェントを訓練するので、中規模の語彙であっても、非常に複雑なアクション空間を扱う必要がある。
i)会話履歴の多様な意味を学習できるLMと、(ii)対応する発話を生成できる専門的なLM(または専門家)からなる、新しい専門家言語モデル(MoE-LM)を用いたRLベースのDMを開発する。
論文 参考訳(メタデータ) (2022-05-31T19:00:41Z) - RiSAWOZ: A Large-Scale Multi-Domain Wizard-of-Oz Dataset with Rich
Semantic Annotations for Task-Oriented Dialogue Modeling [35.75880078666584]
RiSAWOZ は、Rich Semantic s を用いた大規模マルチドメインの Chinese Wizard-of-Oz データセットである。
11.2Kのヒューマン・ツー・ヒューマン(H2H)マルチターン・アノテート・ダイアログを含み、12ドメインにまたがる150K以上の発話がある。
論文 参考訳(メタデータ) (2020-10-17T08:18:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。