論文の概要: What if Red Can Talk? Dynamic Dialogue Generation Using Large Language Models
- arxiv url: http://arxiv.org/abs/2407.20382v1
- Date: Mon, 29 Jul 2024 19:12:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 18:58:28.604542
- Title: What if Red Can Talk? Dynamic Dialogue Generation Using Large Language Models
- Title(参考訳): もし赤が話せるとしたら? 大規模言語モデルを用いた動的対話生成
- Authors: Navapat Nananukul, Wichayaporn Wongkamjan,
- Abstract要約: 本稿では,大規模言語モデル(LLM)を用いて動的かつ文脈的に適切な文字相互作用を生成する対話フィラーフレームワークを提案する。
The Final Fantasy VII Remake and Pokemonの環境でこのフレームワークをテストする。
本研究の目的は,よりニュアンスの高いフィラーダイアログ作成を支援することであり,それによってプレイヤーの没入感を高め,RPG体験の全般的向上を図ることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Role-playing games (RPGs) provide players with a rich, interactive world to explore. Dialogue serves as the primary means of communication between developers and players, manifesting in various forms such as guides, NPC interactions, and storytelling. While most games rely on written scripts to define the main story and character personalities, player immersion can be significantly enhanced through casual interactions between characters. With the advent of large language models (LLMs), we introduce a dialogue filler framework that utilizes LLMs enhanced by knowledge graphs to generate dynamic and contextually appropriate character interactions. We test this framework within the environments of Final Fantasy VII Remake and Pokemon, providing qualitative and quantitative evidence that demonstrates GPT-4's capability to act with defined personalities and generate dialogue. However, some flaws remain, such as GPT-4 being overly positive or more subtle personalities, such as maturity, tend to be of lower quality compared to more overt traits like timidity. This study aims to assist developers in crafting more nuanced filler dialogues, thereby enriching player immersion and enhancing the overall RPG experience.
- Abstract(参考訳): ロールプレイングゲーム(RPG)は、プレイヤーにリッチでインタラクティブな世界を提供する。
対話は開発者とプレイヤー間のコミュニケーションの主要な手段であり、ガイド、NPCインタラクション、ストーリーテリングといった様々な形式で表される。
ほとんどのゲームはメインストーリーとキャラクターの個性を定義するために書かれたスクリプトに依存しているが、プレイヤーの没入はキャラクター間のカジュアルな相互作用によって著しく強化される。
大規模言語モデル(LLM)の出現に伴い,知識グラフによって強化されたLLMを用いて動的かつ文脈的に適切な文字相互作用を生成する対話フィラーフレームワークを導入する。
この枠組みをFinal Fantasy VII RemakeとPokemonの環境下でテストし、GPT-4が定義された個性で行動し、対話を生成する能力を示す質的かつ定量的な証拠を提供する。
しかしながら、GPT-4が過度に肯定的あるいは微妙な個性である、例えば成熟度のようないくつかの欠陥は、湿度のような過度な特性に比べて品質が低い傾向にある。
本研究の目的は,よりニュアンスの高いフィラーダイアログ作成を支援することであり,それによってプレイヤーの没入感を高め,RPG体験の全般的向上を図ることである。
関連論文リスト
- MCPDial: A Minecraft Persona-driven Dialogue Dataset [22.420926356322568]
Minecraft Persona-driven Dialogue dataset (MCPDial)について紹介する。
専門家が書いた会話の小さなシードから始めると、さらに数百の会話を生成するために我々の手法が使われます。
会話は長く、プレイヤーとNPCの間の深い対話を可能にする。
論文 参考訳(メタデータ) (2024-10-29T00:19:55Z) - Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data [58.92110996840019]
本稿では、パーソナリティを指標としたデータを用いて、ロールプレイング言語モデル(RPLM)を強化することを提案する。
具体的には、心理学的尺度からの質問を活用し、高度なRPAを蒸留し、文字の心を把握した対話を生成する。
実験により,本データセットを用いてトレーニングしたRPLMは,一般人格関連評価と人格関連評価の両面において,高度なロールプレイング能力を示した。
論文 参考訳(メタデータ) (2024-06-27T06:24:00Z) - Crafting Customisable Characters with LLMs: Introducing SimsChat, a Persona-Driven Role-Playing Agent Framework [29.166067413153353]
大きな言語モデル(LLM)は人間の指示を理解し、高品質なテキストを生成する。
LLMを利用して実世界のキャラクターをシミュレートするCustomisable Conversation Agent Frameworkを導入する。
我々は、自由にカスタマイズ可能なロールプレイングエージェントであるSimsChatを紹介する。
論文 参考訳(メタデータ) (2024-06-25T22:44:17Z) - RoleCraft-GLM: Advancing Personalized Role-Playing in Large Language Models [6.753588449962107]
RoleCraft-GLMは、大規模言語モデル(LLM)によるパーソナライズされたロールプレイングの強化を目的とした革新的なフレームワークである。
従来の有名人中心のキャラクターから多彩な非有名人ペルソナへとシフトする、ユニークな会話データセットをコントリビュートする。
私たちのアプローチには、細心の注意深いキャラクタ開発、対話が現実的かつ感情的に共鳴することを保証することが含まれる。
論文 参考訳(メタデータ) (2023-12-17T17:57:50Z) - CharacterGLM: Customizing Chinese Conversational AI Characters with
Large Language Models [66.4382820107453]
本稿では,ChatGLM上に構築されたモデルである characterGLM について紹介する。
我々のキャラクタGLMは文字ベースの対話(CharacterDial)を生成するために設計されており、人間固有の社会的欲求と感情的欲求を満たすための文字カスタマイズを備えた対話型AIシステムを実現することを目的としている。
論文 参考訳(メタデータ) (2023-11-28T14:49:23Z) - BotChat: Evaluating LLMs' Capabilities of Having Multi-Turn Dialogues [72.65163468440434]
本報告では,人間型マルチターンチャットのための既存大規模言語モデルの予備的評価を行う。
そこで我々は,ChatSEEDに基づくマルチターン対話を発話によって生成する大規模言語モデル(LLM)を提案する。
GPT-4は優れた品質の人型多元対話を生成できるが、その性能は著しく上回っている。
論文 参考訳(メタデータ) (2023-10-20T16:53:51Z) - Ontologically Faithful Generation of Non-Player Character Dialogues [26.88182907706951]
KNUDGE(KNowledge Constrained User-NPC Dialogue GEneration)は、ゲームキャラクター間の対話のツリーを作成するモデルである。
KNUDGEは、Obsidian EntertainmentのThe Outer Worldsのゲームデータから直接引き出されたサイドクエストの対話から構築されている。
論文 参考訳(メタデータ) (2022-12-20T19:48:10Z) - Large Language Models Meet Harry Potter: A Bilingual Dataset for
Aligning Dialogue Agents with Characters [70.84938803753062]
本稿では,対話エージェントと文字アライメントの研究を進めるために設計されたHarry Potter Dialogueデータセットを紹介する。
このデータセットはハリー・ポッターシリーズのすべての対話セッション(英語と中国語の両方)を含んでいる。
対話シーン、話者、人物関係、属性など、重要な背景情報とともに注釈付けされている。
論文 参考訳(メタデータ) (2022-11-13T10:16:39Z) - A Mixture-of-Expert Approach to RL-based Dialogue Management [56.08449336469477]
我々は、強化学習を用いて、近視性(一般的な発話の出力)を回避し、全体的なユーザ満足度を最大化する対話エージェントを開発する。
既存のRLアプローチのほとんどは、単語レベルでエージェントを訓練するので、中規模の語彙であっても、非常に複雑なアクション空間を扱う必要がある。
i)会話履歴の多様な意味を学習できるLMと、(ii)対応する発話を生成できる専門的なLM(または専門家)からなる、新しい専門家言語モデル(MoE-LM)を用いたRLベースのDMを開発する。
論文 参考訳(メタデータ) (2022-05-31T19:00:41Z) - The Adapter-Bot: All-In-One Controllable Conversational Model [66.48164003532484]
本稿では、DialGPTなどの固定バックボーンモデルを用いて、異なるアダプタを介してオンデマンド対話スキルをトリガーする対話モデルを提案する。
スキルに応じて、モデルはテキスト、テーブル、強調応答などの複数の知識タイプを処理できる。
我々は,既存の会話モデルと比較し,自動評価を用いたモデルの評価を行った。
論文 参考訳(メタデータ) (2020-08-28T10:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。