Resource-Efficient Hybrid Quantum-Classical Simulation Algorithm
- URL: http://arxiv.org/abs/2405.10528v1
- Date: Fri, 17 May 2024 04:17:27 GMT
- Title: Resource-Efficient Hybrid Quantum-Classical Simulation Algorithm
- Authors: Chong Hian Chee, Daniel Leykam, Adrian M. Mak, Kishor Bharti, Dimitris G. Angelakis,
- Abstract summary: Digital quantum computers promise exponential speedups in performing quantum time-evolution.
The task of extracting desired quantum properties at intermediate time steps remains a computational bottleneck.
We propose a hybrid simulator that enables classical computers to leverage FTQC devices and quantum time propagators to overcome this bottleneck.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital quantum computers promise exponential speedups in performing quantum time-evolution, providing an opportunity to simulate quantum dynamics of complex systems in physics and chemistry. However, the task of extracting desired quantum properties at intermediate time steps remains a computational bottleneck due to wavefunction collapse and no-fast-forwarding theorem. Despite significant progress towards building a Fault-Tolerant Quantum Computer (FTQC), there is still a need for resource-efficient quantum simulators. Here, we propose a hybrid simulator that enables classical computers to leverage FTQC devices and quantum time propagators to overcome this bottleneck, so as to efficiently simulate the quantum dynamics of large systems initialized in an unknown superposition of a few system eigenstates. It features no optimization subroutines and avoids barren plateau issues, while consuming fewer quantum resources compared to standard methods when many time steps are required.
Related papers
- Application of Large Language Models to Quantum State Simulation [0.11666234644810894]
Currently, various quantum simulators provide powerful tools for researchers, but simulating quantum evolution with these simulators often incurs high time costs.
This paper details the process of constructing 1-qubit and 2-qubit quantum simulator models, extending to multiple qubits, and ultimately implementing a 3-qubit example.
Our study demonstrates that LLMs can effectively learn and predict the evolution patterns among quantum bits, with minimal error compared to the theoretical output states.
arXiv Detail & Related papers (2024-10-09T07:23:13Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Combining Matrix Product States and Noisy Quantum Computers for Quantum
Simulation [0.0]
Matrix Product States (MPS) and Operators (MPO) have been proven to be a powerful tool to study quantum many-body systems.
We show that using classical knowledge in the form of tensor networks provides a way to better use limited quantum resources.
arXiv Detail & Related papers (2023-05-30T17:21:52Z) - QuDiet: A Classical Simulation Platform for Qubit-Qudit Hybrid Quantum
Systems [7.416447177941264]
textbfQuDiet is a python-based higher-dimensional quantum computing simulator.
textbfQuDiet offers multi-valued logic operations by utilizing generalized quantum gates.
textbfQuDiet provides a full qubit-qudit hybrid quantum simulator package.
arXiv Detail & Related papers (2022-11-15T06:07:04Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Simulating open quantum many-body systems using optimised circuits in
digital quantum simulation [0.0]
We study models in open quantum systems with Trotterisations for the modified Schr"odinger equation (MSSE)
Minimising the leading error in MSSE enables to optimise the quantum circuits.
We run the algorithm on the IBM Quantum devices, showing that the current machine is challenging to give quantitatively accurate time dynamics due to the noise.
arXiv Detail & Related papers (2022-03-27T13:00:02Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - MISTIQS: An open-source software for performing quantum dynamics
simulations on quantum computers [1.3192560874022086]
MISTIQS delivers end-to-end functionality for simulating the quantum many-body dynamics of systems governed by time-dependent Heisenberg Hamiltonians.
It provides high-level programming functionality for generating intermediate representations of quantum circuits.
arXiv Detail & Related papers (2021-01-05T22:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.