論文の概要: UniHPF : Universal Healthcare Predictive Framework with Zero Domain
Knowledge
- arxiv url: http://arxiv.org/abs/2211.08082v1
- Date: Tue, 15 Nov 2022 12:05:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 13:15:42.622607
- Title: UniHPF : Universal Healthcare Predictive Framework with Zero Domain
Knowledge
- Title(参考訳): UniHPF : ドメイン知識をゼロにするユニバーサルヘルスケア予測フレームワーク
- Authors: Kyunghoon Hur, Jungwoo Oh, Junu Kim, Jiyoun Kim, Min Jae Lee, Eunbyeol
Cho, Seong-Eun Moon, Young-Hak Kim, Edward Choi
- Abstract要約: 医療領域の知識を必要とせず、複数の予測タスクに対して最小限の事前処理を行うUniHPF(UniHPF)を提案する。
実験結果から、UniHPF は、異なる EHR システムから任意の形態の医療データを処理できる大規模な EHR モデルを構築することができることが示された。
- 参考スコア(独自算出の注目度): 7.312345319231457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the abundance of Electronic Healthcare Records (EHR), its
heterogeneity restricts the utilization of medical data in building predictive
models. To address this challenge, we propose Universal Healthcare Predictive
Framework (UniHPF), which requires no medical domain knowledge and minimal
pre-processing for multiple prediction tasks. Experimental results demonstrate
that UniHPF is capable of building large-scale EHR models that can process any
form of medical data from distinct EHR systems. We believe that our findings
can provide helpful insights for further research on the multi-source learning
of EHRs.
- Abstract(参考訳): 電子医療記録(EHR)が豊富にあるにもかかわらず、その異質性は予測モデルの構築における医療データの利用を制限する。
この課題に対処するために、医療分野の知識を必要とせず、複数の予測タスクに対して最小限の事前処理を行うUniHPF(UniHPF)を提案する。
実験結果から、UniHPF は、異なる EHR システムから任意の形態の医療データを処理できる大規模な EHR モデルを構築することができることが示された。
EHRのマルチソース学習のさらなる研究に有用な知見が得られると我々は信じている。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - DualMAR: Medical-Augmented Representation from Dual-Expertise Perspectives [20.369746122143063]
本研究では,個人観測データと公開知識ベースによる予測タスクを強化するフレームワークであるDualMARを提案する。
極空間上の座標の取得と角化により、DualMARはKGからのリッチな階層的およびセマンティックな埋め込みに基づく正確な予測を可能にする。
論文 参考訳(メタデータ) (2024-10-25T20:25:22Z) - Multimodal Fusion of EHR in Structures and Semantics: Integrating Clinical Records and Notes with Hypergraph and LLM [39.25272553560425]
本稿では,EHRにおける構造と意味を効果的に統合するMINGLEという新しいフレームワークを提案する。
本フレームワークでは,医療概念のセマンティクスと臨床ノートのセマンティクスをハイパーグラフニューラルネットワークに組み合わせるために,2段階の注入戦略を採用している。
2つのEHRデータセット(パブリックMIMIC-IIIとプライベートCRADLE)の実験結果から、MINGLEは予測性能を11.83%向上できることが示された。
論文 参考訳(メタデータ) (2024-02-19T23:48:40Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
NECHOは,階層的正規化を伴う新しい医用コード中心のマルチモーダル・コントラスト学習フレームワークである。
まず, 医用コード, 人口統計, 臨床ノートを含む多面的情報をネットワーク設計を用いて統合する。
また,EHRデータの階層構造を学習するために,医療オントロジーにおける親レベル情報を用いてモダリティ固有のエンコーダを正規化する。
論文 参考訳(メタデータ) (2024-01-22T01:58:32Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
汎用AIは、さまざまなデータ型を解釈する汎用性のために、制限に対処する可能性を秘めている。
本稿では,最初のオープンソースかつ軽量な視覚言語基盤モデルであるBiomedGPTを提案する。
論文 参考訳(メタデータ) (2023-05-26T17:14:43Z) - Modeling electronic health record data using a knowledge-graph-embedded
topic model [6.170782354287972]
エンド・ツー・エンドの知識グラフに基づくマルチモーダル組込みトピックモデルであるKG-ETMを提案する。
KG-ETMは、医療知識グラフから埋め込みを学習することで、HRデータから潜伏病トピックを抽出する。
また,本モデルでは,患者層化と薬剤推奨のための解釈可能かつ正確な患者表現も発見できる。
論文 参考訳(メタデータ) (2022-06-03T07:58:17Z) - How to Leverage Multimodal EHR Data for Better Medical Predictions? [13.401754962583771]
電子健康記録(EHR)データの複雑さは、ディープラーニングの適用の課題である。
本稿では,まずEHRから臨床ノートを抽出し,これらのデータを統合する方法を提案する。
2つの医療予測タスクの結果、異なるデータを持つ融合モデルが最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-10-29T13:26:05Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
この可能性を解き明かすには、大規模な異種データに対して医療AIモデルの性能を測定する体系的な方法が必要である、と私たちは主張する。
MedPerfは、医療分野で機械学習をベンチマークするためのオープンフレームワークです。
論文 参考訳(メタデータ) (2021-09-29T18:09:41Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。