論文の概要: Traceable and Authenticable Image Tagging for Fake News Detection
- arxiv url: http://arxiv.org/abs/2211.10923v1
- Date: Sun, 20 Nov 2022 09:42:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 20:14:00.840108
- Title: Traceable and Authenticable Image Tagging for Fake News Detection
- Title(参考訳): 偽ニュース検出のためのトレーサビリティと認証可能な画像タグ
- Authors: Ruohan Meng, Zhili Zhou, Qi Cui, Kwok-Yan Lam, Alex Kot
- Abstract要約: Decoupled Invertible Neural Network (DINN) の設計に基づく、トレーサブルで認証可能な画像タギング手法を提案する。
デザインされたDINNは、2つのタグ、すなわち認証可能なタグとトレース可能なタグを公開前に各ニュースイメージに同時に埋め込み、認証検証とソーストレースのために別々に抽出することができる。
- 参考スコア(独自算出の注目度): 10.474778766585848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To prevent fake news images from misleading the public, it is desirable not
only to verify the authenticity of news images but also to trace the source of
fake news, so as to provide a complete forensic chain for reliable fake news
detection. To simultaneously achieve the goals of authenticity verification and
source tracing, we propose a traceable and authenticable image tagging approach
that is based on a design of Decoupled Invertible Neural Network (DINN). The
designed DINN can simultaneously embed the dual-tags, \textit{i.e.},
authenticable tag and traceable tag, into each news image before publishing,
and then separately extract them for authenticity verification and source
tracing. Moreover, to improve the accuracy of dual-tags extraction, we design a
parallel Feature Aware Projection Model (FAPM) to help the DINN preserve
essential tag information. In addition, we define a Distance Metric-Guided
Module (DMGM) that learns asymmetric one-class representations to enable the
dual-tags to achieve different robustness performances under malicious
manipulations. Extensive experiments, on diverse datasets and unseen
manipulations, demonstrate that the proposed tagging approach achieves
excellent performance in the aspects of both authenticity verification and
source tracing for reliable fake news detection and outperforms the prior
works.
- Abstract(参考訳): 偽ニュース画像が公衆を誤解させるのを防止するため、偽ニュース画像の本物性を検証するだけでなく、偽ニュースの出所を追跡することが望ましいとともに、信頼できる偽ニュース検出のための完全な鑑識チェーンを提供する。
信頼性検証とソーストレースの目標を同時に達成するために,Decoupled Invertible Neural Network (DINN) の設計に基づく,トレーサブルで信頼性の高い画像タグ付け手法を提案する。
デザインされたdinnは、発行前の各ニュース画像に、デュアルタグ、 \textit{i.e.}、authenticable tag、traceable tagを同時に埋め込むことができ、認証とソーストレースのためにそれらを別々に抽出することができる。
さらに,双対タグ抽出の精度を向上させるため,dinnが必須タグ情報を保存できるように,並列特徴認識投影モデル(fapm)を設計した。
さらに,非対称な一クラス表現を学習し,悪質な操作下で異なるロバスト性を実現するための距離メトリック誘導モジュール(dmgm)を定義した。
多様なデータセットと未知の操作に関する広範囲な実験により、提案手法は信頼性検証とソーストレースの両方において優れた性能を達成し、信頼性の高い偽ニュース検出を行い、先行研究より優れることを示した。
関連論文リスト
- FM-OSD: Foundation Model-Enabled One-Shot Detection of Anatomical Landmarks [44.54301473673582]
医用画像のランドマーク検出を高精度に行うための,最初の基礎モデル付きワンショットランドマーク検出(FM-OSD)フレームワークを提案する。
本手法は,単一のテンプレート画像のみを用いることで,最先端のワンショットランドマーク検出法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-07-07T15:37:02Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - If at First You Don't Succeed, Try, Try Again: Faithful Diffusion-based
Text-to-Image Generation by Selection [53.320946030761796]
拡散ベースのテキスト・トゥ・イメージ(T2I)モデルは、テキスト・プロンプトへの忠実さを欠く可能性がある。
大規模なT2I拡散モデルは通常想定されるよりも忠実であり、複雑なプロンプトに忠実な画像を生成することができることを示す。
本稿では,テキストプロンプトの候補画像を生成するパイプラインを導入し,自動スコアリングシステムにより最適な画像を選択する。
論文 参考訳(メタデータ) (2023-05-22T17:59:41Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Multimodal Fusion with BERT and Attention Mechanism for Fake News
Detection [0.0]
テキストと視覚データから派生したマルチモーダル特徴を融合させて偽ニュースを検出する新しい手法を提案する。
実験の結果,公開twitterデータセットにおける現在の最先端手法よりも3.1%の精度で性能が向上した。
論文 参考訳(メタデータ) (2021-04-23T08:47:54Z) - Supervision by Registration and Triangulation for Landmark Detection [70.13440728689231]
本稿では,マルチビュー映像を用いた教師なし手法である登録・三角測量(srt)による監視を行い,ランドマーク検出器の精度と精度を向上させる。
ラベルのないデータを活用することで、検出者は大量のラベルのないデータから自由に学べる。
論文 参考訳(メタデータ) (2021-01-25T02:48:21Z) - News Image Steganography: A Novel Architecture Facilitates the Fake News
Identification [52.83247667841588]
フェイクニュースの大部分が、他の情報源からのアンスタンプ画像を引用している。
本稿では,GANに基づく画像ステガノグラフィによる不整合を明らかにするために,News Image Steganographyというアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-01-03T11:12:23Z) - Learning to Recognize Patch-Wise Consistency for Deepfake Detection [39.186451993950044]
パッチワイド一貫性学習(PCL)という,このタスクのための表現学習手法を提案する。
PCLは、画像のソース機能の一貫性を測定し、複数の偽造方法に対する優れた解釈性と堅牢性で表現することを学びます。
7つの一般的なDeepfake検出データセットに対するアプローチを評価します。
論文 参考訳(メタデータ) (2020-12-16T23:06:56Z) - Connecting the Dots Between Fact Verification and Fake News Detection [21.564628184287173]
本稿では,事実検証と偽ニュース検出の点を結合する,シンプルで効果的な手法を提案する。
提案手法は,最近の事実検証モデルの成功を活用し,ゼロショットフェイクニュースの検出を可能にする。
論文 参考訳(メタデータ) (2020-10-11T09:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。