Forecasting Unobserved Node States with spatio-temporal Graph Neural
Networks
- URL: http://arxiv.org/abs/2211.11596v1
- Date: Mon, 21 Nov 2022 15:52:06 GMT
- Title: Forecasting Unobserved Node States with spatio-temporal Graph Neural
Networks
- Authors: Andreas Roth, Thomas Liebig
- Abstract summary: We develop a framework that allows forecasting the state at entirely unobserved locations based on spatial-temporal correlations and the graph inductive bias.
Our framework can be combined with any Graph Neural Network, that exploits surrounding correlations with observed locations by using the network's graph structure.
Our empirical evaluation of both simulated and real-world datasets demonstrates that Graph Neural Networks are well-suited for this task.
- Score: 1.0965065178451106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting future states of sensors is key to solving tasks like weather
prediction, route planning, and many others when dealing with networks of
sensors. But complete spatial coverage of sensors is generally unavailable and
would practically be infeasible due to limitations in budget and other
resources during deployment and maintenance. Currently existing approaches
using machine learning are limited to the spatial locations where data was
observed, causing limitations to downstream tasks. Inspired by the recent surge
of Graph Neural Networks for spatio-temporal data processing, we investigate
whether these can also forecast the state of locations with no sensors
available. For this purpose, we develop a framework, named Forecasting
Unobserved Node States (FUNS), that allows forecasting the state at entirely
unobserved locations based on spatio-temporal correlations and the graph
inductive bias. FUNS serves as a blueprint for optimizing models only on
observed data and demonstrates good generalization capabilities for predicting
the state at entirely unobserved locations during the testing stage. Our
framework can be combined with any spatio-temporal Graph Neural Network, that
exploits spatio-temporal correlations with surrounding observed locations by
using the network's graph structure. Our employed model builds on a previous
model by also allowing us to exploit prior knowledge about locations of
interest, e.g. the road type. Our empirical evaluation of both simulated and
real-world datasets demonstrates that Graph Neural Networks are well-suited for
this task.
Related papers
- Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
We study spatial-temporal forecasting for a region of interest without any historical observations.
We propose a model named STSM for the task.
Our key insight is to learn from the locations that resemble those in the region of interest.
arXiv Detail & Related papers (2024-01-19T06:26:05Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Learning Dynamic Graphs from All Contextual Information for Accurate
Point-of-Interest Visit Forecasting [9.670949636600035]
Busyness Graph Neural Network (BysGNN) is a temporal graph neural network designed to learn and uncover the underlying multi-context correlations.
By incorporating all contextual, temporal, and spatial signals, we observe a significant improvement in our forecasting accuracy over state-of-the-art forecasting models.
arXiv Detail & Related papers (2023-06-28T05:14:03Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - Graph Neural Processes for Spatio-Temporal Extrapolation [36.01312116818714]
We study the task of extrapolation-temporal processes that generates data at target locations from surrounding contexts in a graph.
Existing methods either use learning-grained models like Neural Networks or statistical approaches like Gaussian for this task.
We propose Spatio Graph Neural Processes (STGNP), a neural latent variable model which commands these capabilities simultaneously.
arXiv Detail & Related papers (2023-05-30T03:55:37Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Graph Convolutional Networks for Traffic Forecasting with Missing Values [0.5774786149181392]
We propose a Graph Convolutional Network model with the ability to handle the complex missing values in the Spatio-temporal context.
We propose as well a dynamic graph learning module based on the learned local-global features.
The experimental results on real-life datasets show the reliability of our proposed method.
arXiv Detail & Related papers (2022-12-13T08:04:38Z) - Multi-time Predictions of Wildfire Grid Map using Remote Sensing Local
Data [0.0]
This paper proposes a distributed learning framework that shares local data collected in ten locations in the western USA throughout local agents.
The proposed model has distinct features that address the characteristic need in prediction evaluations, including dynamic online estimation and time-series modeling.
arXiv Detail & Related papers (2022-09-15T22:34:06Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
We propose NETS-ImpGAN, a novel deep learning framework that can be trained on incomplete data with missing values in both history and future.
We conduct extensive experiments on three real-world datasets under different missing patterns and missing rates.
arXiv Detail & Related papers (2021-10-05T18:20:42Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
Reasoning over visual data is a desirable capability for robotics and vision-based applications.
In this paper, we present a framework on graph to uncover relationships in different objects in the scene for reasoning about pedestrian intent.
Pedestrian intent, defined as the future action of crossing or not-crossing the street, is a very crucial piece of information for autonomous vehicles.
arXiv Detail & Related papers (2020-02-20T18:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.