論文の概要: Multiresolution kernel matrix algebra
- arxiv url: http://arxiv.org/abs/2211.11681v1
- Date: Mon, 21 Nov 2022 17:50:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 23:47:28.931546
- Title: Multiresolution kernel matrix algebra
- Title(参考訳): 多分解能カーネル行列代数
- Authors: H. Harbrecht, M. Multerer, O. Schenk, and Ch. Schwab
- Abstract要約: 本稿では,効率的な分散データ解析を可能にするカーネル行列のスパース演算を提案する。
カーネル行列の逆も圧縮可能であるので、厳密なスパース選択逆変換手法を用いることで、逆カーネル行列への高速アクセスが可能となる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a sparse arithmetic for kernel matrices, enabling efficient
scattered data analysis. The compression of kernel matrices by means of
samplets yields sparse matrices such that assembly, addition, and
multiplication of these matrices can be performed with essentially linear cost.
Since the inverse of a kernel matrix is compressible, too, we have also fast
access to the inverse kernel matrix by employing exact sparse selected
inversion techniques. As a consequence, we can rapidly evaluate series
expansions and contour integrals to access, numerically and approximately in a
data-sparse format, more complicated matrix functions such as $A^\alpha$ and
$\exp(A)$. By exploiting the matrix arithmetic, also efficient Gaussian process
learning algorithms for spatial statistics can be realized. Numerical results
are presented to quantify and quality our findings.
- Abstract(参考訳): 本稿では,効率的な分散データ解析を可能にするカーネル行列のスパース演算を提案する。
サンプルレットによるカーネル行列の圧縮は、これらの行列の組立、加算、乗算のようなスパース行列を本質的に線形コストで行うことができる。
カーネル行列の逆も圧縮可能であるので、正確なスパース選択逆変換手法を用いて、逆カーネル行列への高速アクセスも可能である。
その結果、データスパース形式、例えば$A^\alpha$ や $\exp(A)$ のようなより複雑な行列関数において、アクセスする直列展開や輪郭積分を高速に評価することができる。
行列演算を利用することで、空間統計学のための効率的なガウス過程学習アルゴリズムを実現することができる。
結果の定量化と質化のために数値的な結果が示されています。
関連論文リスト
- Optimal Quantization for Matrix Multiplication [35.007966885532724]
我々は、ネスト格子に基づく普遍量化器を、任意の(非ランダムな)行列対に対する近似誤差の明示的な保証付きで、フロベニウスノルム$|A|_F, |B|_F$, $|Atop B|_F$のみの観点から、$A$, $B$とする。
論文 参考訳(メタデータ) (2024-10-17T17:19:48Z) - Block-encoding dense and full-rank kernels using hierarchical matrices:
applications in quantum numerical linear algebra [6.338178373376447]
本稿では,量子コンピュータ上の階層行列構造のブロック符号化方式を提案する。
我々の手法は、次元$N$から$O(kappa operatornamepolylog(fracNvarepsilon))$の量子線型系を解くランタイムを改善することができる。
論文 参考訳(メタデータ) (2022-01-27T05:24:02Z) - Sublinear Time Approximation of Text Similarity Matrices [50.73398637380375]
一般的なNystr"om法を不確定な設定に一般化する。
我々のアルゴリズムは任意の類似性行列に適用でき、行列のサイズでサブ線形時間で実行される。
本手法は,CUR分解の単純な変種とともに,様々な類似性行列の近似において非常によく機能することを示す。
論文 参考訳(メタデータ) (2021-12-17T17:04:34Z) - Learning in High-Dimensional Feature Spaces Using ANOVA-Based Fast
Matrix-Vector Multiplication [0.0]
カーネル行列は一般に密度が高く大規模である。特徴空間の次元によっては、合理的な時間における全てのエントリの計算さえも難しい課題となる。
そこで我々は,ANOVAカーネルを用いて低次元の特徴空間に基づいて複数のカーネルを構築し,行列ベクトル積を実現する高速アルゴリズムを提案する。
特徴グループ化アプローチに基づいて,カーネルリッジ回帰と事前条件付き共役勾配解法を選択する学習手法に,高速な行列ベクトル積を組み込む方法を示す。
論文 参考訳(メタデータ) (2021-11-19T10:29:39Z) - Sparse Factorization of Large Square Matrices [10.94053598642913]
本稿では,大面積の正方行列とスパースフルランク行列の積を近似する。
近似では、我々の手法は$Ntimes N$ full matrix に対して$N(log N)2$ non-zero number しか必要としない。
近似行列がスパースかつハイランクである場合,本手法により近似精度が向上することを示す。
論文 参考訳(メタデータ) (2021-09-16T18:42:21Z) - Robust 1-bit Compressive Sensing with Partial Gaussian Circulant
Matrices and Generative Priors [54.936314353063494]
我々は,ロバストな1ビット圧縮センシングのための相関に基づく最適化アルゴリズムのリカバリ保証を提供する。
我々は,実用的な反復アルゴリズムを用いて,画像データセットの数値実験を行い,結果の相関付けを行う。
論文 参考訳(メタデータ) (2021-08-08T05:28:06Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
非PSDおよび2乗根行列の次元削減法を提案する。
複数のダウンストリームタスクにこれらのテクニックをどのように使用できるかを示す。
論文 参考訳(メタデータ) (2021-06-16T04:07:48Z) - Linear-Sample Learning of Low-Rank Distributions [56.59844655107251]
ktimes k$, rank-r$, matrices to normalized $L_1$ distance requires $Omega(frackrepsilon2)$ sample。
我々は、$cal O(frackrepsilon2log2fracepsilon)$ sample, a number linear in the high dimension, and almost linear in the matrices, usually low, rank proofs.というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-30T19:10:32Z) - Sketching Transformed Matrices with Applications to Natural Language
Processing [76.6222695417524]
本稿では, 変換行列を用いて, 与えられた小さな行列の積を計算するための空間効率のよいスケッチアルゴリズムを提案する。
提案手法は誤差が小さく,空間と時間の両方で効率がよいことを示す。
論文 参考訳(メタデータ) (2020-02-23T03:07:31Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
最小二乗問題に対する反復スケッチの性能について検討する。
本研究では、Haar行列とランダム化されたHadamard行列の収束速度が同一であることを示し、ランダムなプロジェクションを経時的に改善することを示した。
これらの手法は、ランダム化次元還元を用いた他のアルゴリズムにも適用することができる。
論文 参考訳(メタデータ) (2020-02-03T16:17:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。