論文の概要: Vertical Federated Learning: Concepts, Advances and Challenges
- arxiv url: http://arxiv.org/abs/2211.12814v3
- Date: Wed, 27 Sep 2023 05:51:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-28 22:24:11.932269
- Title: Vertical Federated Learning: Concepts, Advances and Challenges
- Title(参考訳): 垂直的フェデレーション学習 - 概念,進歩,課題
- Authors: Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye,
Ye Ouyang, Ya-Qin Zhang and Qiang Yang
- Abstract要約: VFL(Vertical Federated Learning)の概念とアルゴリズムについてレビューする。
VFL設定とプライバシ保護プロトコルを網羅的に分類する。
本稿では,コミュニケーション,計算,プライバシ,有効性,公平性といった制約を考慮した統合フレームワーク VFLow を提案する。
- 参考スコア(独自算出の注目度): 18.38260017835129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vertical Federated Learning (VFL) is a federated learning setting where
multiple parties with different features about the same set of users jointly
train machine learning models without exposing their raw data or model
parameters. Motivated by the rapid growth in VFL research and real-world
applications, we provide a comprehensive review of the concept and algorithms
of VFL, as well as current advances and challenges in various aspects,
including effectiveness, efficiency, and privacy. We provide an exhaustive
categorization for VFL settings and privacy-preserving protocols and
comprehensively analyze the privacy attacks and defense strategies for each
protocol. In the end, we propose a unified framework, termed VFLow, which
considers the VFL problem under communication, computation, privacy, as well as
effectiveness and fairness constraints. Finally, we review the most recent
advances in industrial applications, highlighting open challenges and future
directions for VFL.
- Abstract(参考訳): Vertical Federated Learning(VFL)は、同じユーザのセットに関する異なる特徴を持つ複数のパーティが、生のデータやモデルのパラメータを公開せずに、共同で機械学習モデルをトレーニングする、フェデレーション付き学習環境である。
vfl研究と実世界のアプリケーションの急速な成長に動機づけられ、vflの概念とアルゴリズムの包括的なレビューと、有効性、効率性、プライバシなど、さまざまな面での現在の進歩と課題を提供する。
VFL設定とプライバシ保護プロトコルの徹底的な分類を行い、各プロトコルのプライバシ攻撃と防衛戦略を包括的に分析する。
最後に,コミュニケーションや計算,プライバシ,さらには有効性や公平性といった制約の下でのvfl問題を考える,vflowと呼ばれる統一フレームワークを提案する。
最後に,産業応用の最新動向を概観し,vflの課題と今後の方向性について述べる。
関連論文リスト
- UIFV: Data Reconstruction Attack in Vertical Federated Learning [5.404398887781436]
Vertical Federated Learning (VFL)は、参加者が生のプライベートデータを共有することなく、協調的な機械学習を促進する。
近年の研究では、学習プロセス中にデータ漏洩によって、敵が機密性を再構築する可能性のあるプライバシーリスクが明らかにされている。
我々の研究は、実用的なVFLアプリケーションに真の脅威をもたらす、VFLシステム内の深刻なプライバシー上の脆弱性を露呈する。
論文 参考訳(メタデータ) (2024-06-18T13:18:52Z) - Vertical Federated Learning for Effectiveness, Security, Applicability: A Survey [67.48187503803847]
Vertical Federated Learning(VFL)は、プライバシ保護のための分散学習パラダイムである。
近年の研究では、VFLの様々な課題に対処する有望な成果が示されている。
この調査は、最近の展開を体系的に概観する。
論文 参考訳(メタデータ) (2024-05-25T16:05:06Z) - Unlocking the Potential of Prompt-Tuning in Bridging Generalized and
Personalized Federated Learning [49.72857433721424]
Vision Transformer (ViT) と Visual Prompt Tuning (VPT) は、様々なコンピュータビジョンタスクの効率を改善して最先端のパフォーマンスを実現する。
本稿では,GFL(Generalized FL)とPFL(Personalized FL)を組み合わせた新しいアルゴリズムSGPTを提案する。
論文 参考訳(メタデータ) (2023-10-27T17:22:09Z) - VFLAIR: A Research Library and Benchmark for Vertical Federated Learning [14.878602173713686]
垂直学習(VFL)は、同じグループのユーザの異なる特徴を持つ参加者が、生のデータやモデルパラメータを公開せずに協調トレーニングを達成できるようにする、協調トレーニングパラダイムとして登場した。
近年、VFLは研究の可能性や現実世界の応用に大きな注目を集めているが、様々な種類のデータ推論やバックドア攻撃の防衛など、依然として重大な課題に直面している。
我々は、様々なモデル、データセット、プロトコルによるVFLトレーニングと、攻撃と防御戦略の総合的な評価のための標準化されたモジュールをサポートする、フェデレーションで軽量なVFLフレームワークであるVFLAIRを提案する。
論文 参考訳(メタデータ) (2023-10-15T13:18:31Z) - Bayesian Federated Learning: A Survey [54.40136267717288]
フェデレートラーニング(FL)は、分散インフラストラクチャ、コミュニケーション、コンピューティング、学習をプライバシ保護の方法で統合する際の利点を示している。
既存のFL手法のロバスト性と能力は、制限された動的データと条件によって挑戦される。
BFLはこれらの問題に対処するための有望なアプローチとして登場した。
論文 参考訳(メタデータ) (2023-04-26T03:41:17Z) - Low-Latency Cooperative Spectrum Sensing via Truncated Vertical
Federated Learning [51.51440623636274]
データプライバシを損なうことなく、複数のセカンダリユーザ(SU)にまたがる分散機能を活用できる垂直連合学習(VFL)フレームワークを提案する。
学習プロセスの高速化を目的として,T-VFL(Truncated vertical Federated Learning)アルゴリズムを提案する。
T-VFLの収束性能は、数学的解析によって提供され、シミュレーション結果によって正当化される。
論文 参考訳(メタデータ) (2022-08-07T10:39:27Z) - BlindFL: Vertical Federated Machine Learning without Peeking into Your
Data [20.048695060411774]
垂直連合学習(VFL)は、さまざまな参加者のプライベートデータに基づいてMLモデルを構築する場合を記述している。
本稿では,VFLトレーニングと推論のための新しいフレームワークであるBlindFLを紹介する。
BlindFLは、堅牢なプライバシー保証を達成しつつ、多様なデータセットやモデルを効率的にサポートする。
論文 参考訳(メタデータ) (2022-06-16T07:26:50Z) - Desirable Companion for Vertical Federated Learning: New Zeroth-Order
Gradient Based Algorithm [140.25480610981504]
VFLアルゴリズムを評価するための指標の完全なリストには、モデル適用性、プライバシ、通信、計算効率が含まれるべきである。
ブラックボックスのスケーラビリティを備えた新しいVFLフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-19T13:55:47Z) - Vertical Federated Learning: Challenges, Methodologies and Experiments [34.4865409422585]
垂直学習(VFL)は、異なるクライアントからサブモデルを受け入れることで、ハイパーMLモデルを構築することができる。
本稿では,VFLにおける課題を効果的に解決し,実生活データセット上で実験を行う。
論文 参考訳(メタデータ) (2022-02-09T06:56:41Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
このトピックに関する最初の包括的な調査を実施します。
FLの概念の簡潔な紹介と、1脅威モデル、2堅牢性に対する中毒攻撃と防御、3プライバシーに対する推論攻撃と防御、というユニークな分類学を通じて、私たちはこの重要なトピックのアクセス可能なレビューを提供します。
論文 参考訳(メタデータ) (2020-12-07T12:11:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。