ACROBAT -- a multi-stain breast cancer histological whole-slide-image
data set from routine diagnostics for computational pathology
- URL: http://arxiv.org/abs/2211.13621v1
- Date: Thu, 24 Nov 2022 14:16:36 GMT
- Title: ACROBAT -- a multi-stain breast cancer histological whole-slide-image
data set from routine diagnostics for computational pathology
- Authors: Philippe Weitz, Masi Valkonen, Leslie Solorzano, Circe Carr, Kimmo
Kartasalo, Constance Boissin, Sonja Koivukoski, Aino Kuusela, Dusan Rasic,
Yanbo Feng, Sandra Kristiane Sinius Pouplier, Abhinav Sharma, Kajsa Ledesma
Eriksson, Leena Latonen, Anne-Vibeke Laenkholm, Johan Hartman, Pekka
Ruusuvuori, Mattias Rantalainen
- Abstract summary: The analysis of FFPE tissue sections stained with haematoxylin and eosin (H&E) orchemistry (IHC) is an essential part of the pathologic assessment of surgically resected breast cancer specimens.
This data set has the potential to enable many different avenues of computational pathology research.
- Score: 1.6619031082709266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The analysis of FFPE tissue sections stained with haematoxylin and eosin
(H&E) or immunohistochemistry (IHC) is an essential part of the pathologic
assessment of surgically resected breast cancer specimens. IHC staining has
been broadly adopted into diagnostic guidelines and routine workflows to
manually assess status and scoring of several established biomarkers, including
ER, PGR, HER2 and KI67. However, this is a task that can also be facilitated by
computational pathology image analysis methods. The research in computational
pathology has recently made numerous substantial advances, often based on
publicly available whole slide image (WSI) data sets. However, the field is
still considerably limited by the sparsity of public data sets. In particular,
there are no large, high quality publicly available data sets with WSIs of
matching IHC and H&E-stained tissue sections. Here, we publish the currently
largest publicly available data set of WSIs of tissue sections from surgical
resection specimens from female primary breast cancer patients with matched
WSIs of corresponding H&E and IHC-stained tissue, consisting of 4,212 WSIs from
1,153 patients. The primary purpose of the data set was to facilitate the
ACROBAT WSI registration challenge, aiming at accurately aligning H&E and IHC
images. For research in the area of image registration, automatic quantitative
feedback on registration algorithm performance remains available through the
ACROBAT challenge website, based on more than 37,000 manually annotated
landmark pairs from 13 annotators. Beyond registration, this data set has the
potential to enable many different avenues of computational pathology research,
including stain-guided learning, virtual staining, unsupervised pre-training,
artefact detection and stain-independent models.
Related papers
- Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - An Empirical Analysis for Zero-Shot Multi-Label Classification on
COVID-19 CT Scans and Uncurated Reports [0.5527944417831603]
pandemic resulted in vast repositories of unstructured data, including radiology reports, due to increased medical examinations.
Previous research on automated diagnosis of COVID-19 primarily focuses on X-ray images, despite their lower precision compared to computed tomography (CT) scans.
In this work, we leverage unstructured data from a hospital and harness the fine-grained details offered by CT scans to perform zero-shot multi-label classification based on contrastive visual language learning.
arXiv Detail & Related papers (2023-09-04T17:58:01Z) - CARE: A Large Scale CT Image Dataset and Clinical Applicable Benchmark
Model for Rectal Cancer Segmentation [8.728236864462302]
Rectal cancer segmentation of CT image plays a crucial role in timely clinical diagnosis, radiotherapy treatment, and follow-up.
These obstacles arise from the intricate anatomical structures of the rectum and the difficulties in performing differential diagnosis of rectal cancer.
To address these issues, this work introduces a novel large scale rectal cancer CT image dataset CARE with pixel-level annotations for both normal and cancerous rectum.
We also propose a novel medical cancer lesion segmentation benchmark model named U-SAM.
The model is specifically designed to tackle the challenges posed by the intricate anatomical structures of abdominal organs by incorporating prompt information.
arXiv Detail & Related papers (2023-08-16T10:51:27Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - BRACS: A Dataset for BReAst Carcinoma Subtyping in H&E Histology Images [4.974822167947921]
We introduce the BReAst Carcinoma Subtyping dataset, a large cohort of annotated Hematoxylin & Eosin (H&E)-stained images to facilitate the characterization of breast lesions.
BRACS contains 547 Whole-Slide Images (WSIs), and 4539 Regions of Interest (ROIs) extracted from the WSIs.
arXiv Detail & Related papers (2021-11-08T15:04:16Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Automated risk classification of colon biopsies based on semantic
segmentation of histopathology images [4.144141972397873]
We present an approach to address two major challenges in automated assessment of colorectal histopathology whole-slide images.
First, we present an AI-based method to segment multiple tissue compartments in the H&E-stained whole-slide image.
Second, we use the best performing AI model as the basis for a computer-aided diagnosis system.
arXiv Detail & Related papers (2021-09-16T11:50:10Z) - BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray
dataset [6.5800499500032705]
We design an end-to-end deep learning architecture for predicting, on Chest X-rays images (CXR), a multi-regional score conveying the degree of lung compromise in COVID-19 patients.
We exploit a clinical dataset of almost 5,000 CXR annotated images collected in the same hospital.
Our solution outperforms single human annotators in rating accuracy and consistency.
arXiv Detail & Related papers (2020-06-08T13:55:58Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.