論文の概要: A Self-Attention Ansatz for Ab-initio Quantum Chemistry
- arxiv url: http://arxiv.org/abs/2211.13672v1
- Date: Thu, 24 Nov 2022 15:38:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 18:50:48.860291
- Title: A Self-Attention Ansatz for Ab-initio Quantum Chemistry
- Title(参考訳): ab-initio量子化学のための自己アテンションアンサッツ
- Authors: Ingrid von Glehn, James S. Spencer, David Pfau
- Abstract要約: 本稿では、自己注意型ウェーブファンクショントランス(Psiformer)を用いたニューラルネットワークアーキテクチャを提案する。
我々は、Psiformerを他のニューラルネットワークのドロップイン代替として使用することができ、計算精度を劇的に向上させることができることを示した。
これは、自己アテンションネットワークが電子間の複雑な量子力学的相関を学習できることを示し、より大きな系の化学計算において前例のない精度に達するための有望な経路であることを示している。
- 参考スコア(独自算出の注目度): 3.4161707164978137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel neural network architecture using self-attention, the
Wavefunction Transformer (Psiformer), which can be used as an approximation (or
Ansatz) for solving the many-electron Schr\"odinger equation, the fundamental
equation for quantum chemistry and material science. This equation can be
solved from first principles, requiring no external training data. In recent
years, deep neural networks like the FermiNet and PauliNet have been used to
significantly improve the accuracy of these first-principle calculations, but
they lack an attention-like mechanism for gating interactions between
electrons. Here we show that the Psiformer can be used as a drop-in replacement
for these other neural networks, often dramatically improving the accuracy of
the calculations. On larger molecules especially, the ground state energy can
be improved by dozens of kcal/mol, a qualitative leap over previous methods.
This demonstrates that self-attention networks can learn complex quantum
mechanical correlations between electrons, and are a promising route to
reaching unprecedented accuracy in chemical calculations on larger systems.
- Abstract(参考訳): 本稿では,量子化学と物質科学の基本的な方程式である多電子Schr\odinger方程式の近似(あるいはAnsatz)として使用できる,自己注意型ウェーブファンクショントランスフォーマー(Psiformer)を用いたニューラルネットワークアーキテクチャを提案する。
この方程式は第一原理から解くことができ、外部のトレーニングデータを必要としない。
近年、フェルミントやポーリネットのような深層ニューラルネットワークは、これらの第一原理計算の精度を著しく向上させるのに使われているが、電子間の相互作用をゲートする注意深いメカニズムを欠いている。
ここでは、Psiformerが他のニューラルネットワークのドロップイン代替として使用でき、計算の精度が劇的に向上することを示す。
特に大きな分子では、基底状態エネルギーを数十kcal/molで改善することができる。
これは、自己結合ネットワークが電子間の複雑な量子力学的相関を学習できることを示し、より大きな系の化学計算において前例のない精度に達する有望な経路であることを示している。
関連論文リスト
- Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
神経波関数は、計算コストが高いにもかかわらず、多電子系の基底状態の近似において前例のない精度を達成した。
近年の研究では、個々の問題を個別に解くのではなく、様々な構造や化合物にまたがる一般化波動関数を学習することでコストを下げることが提案されている。
この研究は、分子間の一般化に適した過度にパラメータ化され、完全に学習可能なニューラルウェーブ関数を定義することで、この問題に取り組む。
論文 参考訳(メタデータ) (2024-05-23T16:30:51Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
我々は、cQDOモデルがフォトニック量子コンピュータ上でのシミュレーションに自然に役立っていることを示す。
我々は、XanaduのStrawberry Fieldsフォトニクスライブラリを利用して、二原子系の結合エネルギー曲線を計算する。
興味深いことに、2つの結合したボソニックQDOは安定な結合を示す。
論文 参考訳(メタデータ) (2023-06-14T14:44:12Z) - Ab-initio quantum chemistry with neural-network wavefunctions [2.3306857544105686]
分子科学における機械学習の主な応用は、ポテンシャルエネルギー表面や力場を学習することである。
本稿では,ニューラルネットワークアンサッツ関数を用いた量子モンテカルロ法(QMC)に着目し,電子式Schr"odingerの解法を提案する。
論文 参考訳(メタデータ) (2022-08-26T11:33:31Z) - Nuclear two point correlation functions on a quantum-computer [105.89228861548395]
我々は、現在の量子ハードウェアとエラー軽減プロトコルを使用して、高度に単純化された核モデルに対する応答関数を計算する。
この研究では、現在の量子ハードウェアとエラー軽減プロトコルを用いて、4つの格子上に3つの区別可能な核子を持つ2次元のフェルミ・ハバードモデルに対する応答関数を計算する。
論文 参考訳(メタデータ) (2021-11-04T16:25:33Z) - Autoregressive neural-network wavefunctions for ab initio quantum
chemistry [3.5987961950527287]
新しい自己回帰型ニューラルネットワーク(ARN)による電子波動関数のパラメータ化
これにより、最大30個のスピン軌道を持つ分子上で電子構造計算を行うことができる。
論文 参考訳(メタデータ) (2021-09-26T13:44:41Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
分子系の励起電子状態の計算にD波量子アニールを用いることを実証する。
これらのシミュレーションは、太陽光発電、半導体技術、ナノサイエンスなど、いくつかの分野で重要な役割を果たしている。
論文 参考訳(メタデータ) (2021-07-01T01:02:17Z) - SE(3)-equivariant prediction of molecular wavefunctions and electronic
densities [4.2572103161049055]
本稿では,幾何点クラウドデータのためのディープラーニングアーキテクチャを構築するための汎用SE(3)-同変演算とビルディングブロックを紹介する。
本モデルでは,従来の最先端モデルと比較して,予測誤差を最大2桁まで低減する。
低精度参照波動関数で訓練されたモデルが電子的多体相互作用の正当性を暗黙的に学習するトランスファーラーニングアプリケーションにおいて、我々のアプローチの可能性を実証する。
論文 参考訳(メタデータ) (2021-06-04T08:57:46Z) - Solving the electronic Schr\"odinger equation for multiple nuclear
geometries with weight-sharing deep neural networks [4.1201966507589995]
本稿では,異なる分子ジオメトリに対するニューラルネットワークモデル最適化において,重み共有制約を導入する。
この手法は、同じ分子の核ジオメトリの集合を等級で考えることで最適化を加速することができる。
論文 参考訳(メタデータ) (2021-05-18T08:23:09Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。