論文の概要: Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations
- arxiv url: http://arxiv.org/abs/2405.14762v3
- Date: Thu, 31 Oct 2024 12:46:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:58:15.789846
- Title: Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations
- Title(参考訳): ニューラル・ファフィアン:多くの電子シュレーディンガー方程式を解く
- Authors: Nicholas Gao, Stephan Günnemann,
- Abstract要約: 神経波関数は、計算コストが高いにもかかわらず、多電子系の基底状態の近似において前例のない精度を達成した。
近年の研究では、個々の問題を個別に解くのではなく、様々な構造や化合物にまたがる一般化波動関数を学習することでコストを下げることが提案されている。
この研究は、分子間の一般化に適した過度にパラメータ化され、完全に学習可能なニューラルウェーブ関数を定義することで、この問題に取り組む。
- 参考スコア(独自算出の注目度): 58.130170155147205
- License:
- Abstract: Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost. Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently. Enforcing the permutation antisymmetry of electrons in such generalized neural wave functions remained challenging as existing methods require discrete orbital selection via non-learnable hand-crafted algorithms. This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules. We achieve this by relying on Pfaffians rather than Slater determinants. The Pfaffian allows us to enforce the antisymmetry on arbitrary electronic systems without any constraint on electronic spin configurations or molecular structure. Our empirical evaluation finds that a single neural Pfaffian calculates the ground state and ionization energies with chemical accuracy across various systems. On the TinyMol dataset, we outperform the `gold-standard' CCSD(T) CBS reference energies by 1.9m$E_h$ and reduce energy errors compared to previous generalized neural wave functions by up to an order of magnitude.
- Abstract(参考訳): 神経波関数は、計算コストが高いにもかかわらず、多電子系の基底状態の近似において前例のない精度を達成した。
近年の研究では、個々の問題を個別に解くのではなく、様々な構造や化合物にまたがる一般化波動関数を学習することでコストを下げることが提案されている。
このような一般化された神経波関数における電子の置換反対称性を強制することは、既存の方法では、学習不可能な手作りアルゴリズムによる離散軌道選択を必要とするため、依然として困難である。
この研究は、分子間の一般化に適した過度にパラメータ化され、完全に学習可能なニューラルウェーブ関数を定義することで、この問題に対処する。
我々は、スレーター行列式ではなく、ファフィアンに依存することでこれを達成している。
ファフィアンは電子スピン配置や分子構造に制約を加えることなく任意の電子系に反対称性を強制することができる。
実験により, 1つのニューラル・ファフアンが, 各種系の化学的精度で基底状態と電離エネルギーを計算することがわかった。
TinyMolデータセットでは,CBSの基準エネルギーである「ゴールドスタンダード」CCSD(T)を1.9m$E_h$で上回り,従来の一般化されたニューラルウェーブ関数と比較してエネルギー誤差を最大1桁まで低減する。
関連論文リスト
- Machine learning one-dimensional spinless trapped fermionic systems with
neural-network quantum states [1.6606527887256322]
ガウスポテンシャルを介して相互作用する完全に偏極された1次元フェルミオン系の基底状態特性を計算する。
我々は、波動関数のアンサッツとして、反対称人工ニューラルネットワーク(英語版)またはニューラル量子状態を用いる。
相互作用の兆候によって、非常に異なる基底状態が見つかる。
論文 参考訳(メタデータ) (2023-04-10T17:36:52Z) - A Self-Attention Ansatz for Ab-initio Quantum Chemistry [3.4161707164978137]
本稿では、自己注意型ウェーブファンクショントランス(Psiformer)を用いたニューラルネットワークアーキテクチャを提案する。
我々は、Psiformerを他のニューラルネットワークのドロップイン代替として使用することができ、計算精度を劇的に向上させることができることを示した。
これは、自己アテンションネットワークが電子間の複雑な量子力学的相関を学習できることを示し、より大きな系の化学計算において前例のない精度に達するための有望な経路であることを示している。
論文 参考訳(メタデータ) (2022-11-24T15:38:55Z) - First principles physics-informed neural network for quantum
wavefunctions and eigenvalue surfaces [0.0]
本稿では,量子系のパラメータ固有値と固有関数曲面を求めるニューラルネットワークを提案する。
我々は水素分子イオンの解法に本手法を適用した。
論文 参考訳(メタデータ) (2022-11-08T23:22:42Z) - $O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks [107.86545461433616]
我々は、置換同変アーキテクチャを提案し、その上で行列式 Slater を適用して反対称性を誘導する。
FermiNetは、単一の行列式を持つ普遍近似能力があることが証明されている。
これは実装が容易であり、計算コストを$O(N2)$に下げることができる。
論文 参考訳(メタデータ) (2022-05-26T07:44:54Z) - Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave
Functions [2.61072980439312]
本研究では、グラフニューラルネットワーク(GNN)とニューラルウェーブ関数を組み合わせることで、VMCを介して複数の測地に対するシュル「オーディンガー方程式」を同時に解く。
既存の最先端ネットワークと比較して、私たちのポテンシャルエネルギーサーフェスネットワーク(PESNet)は、複数のジオメトリーのトレーニングを最大40倍スピードアップし、その精度をマッチングまたは超過します。
論文 参考訳(メタデータ) (2021-10-11T07:58:31Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
静的空洞非線形性は通常、ボゾン量子誤り訂正符号の性能を制限する。
非線形性を摂動として扱うことで、シュリーファー・ヴォルフ変換を用いて実効ハミルトニアンを導出する。
その結果、立方体相互作用は、線形演算と非線形演算の両方の有効率を高めることができることがわかった。
論文 参考訳(メタデータ) (2021-07-14T15:11:05Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
分子系の励起電子状態の計算にD波量子アニールを用いることを実証する。
これらのシミュレーションは、太陽光発電、半導体技術、ナノサイエンスなど、いくつかの分野で重要な役割を果たしている。
論文 参考訳(メタデータ) (2021-07-01T01:02:17Z) - SE(3)-equivariant prediction of molecular wavefunctions and electronic
densities [4.2572103161049055]
本稿では,幾何点クラウドデータのためのディープラーニングアーキテクチャを構築するための汎用SE(3)-同変演算とビルディングブロックを紹介する。
本モデルでは,従来の最先端モデルと比較して,予測誤差を最大2桁まで低減する。
低精度参照波動関数で訓練されたモデルが電子的多体相互作用の正当性を暗黙的に学習するトランスファーラーニングアプリケーションにおいて、我々のアプローチの可能性を実証する。
論文 参考訳(メタデータ) (2021-06-04T08:57:46Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
三原子分子の RaOH はレーザー冷却性とスペクトルの相反する二重項の利点を組み合わせたものである。
断熱ハミルトニアンから導かれる密結合方程式を用いて, 基底電子状態におけるRaOHの偏波関数と励起振動状態を得る。
論文 参考訳(メタデータ) (2020-12-15T17:08:33Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。