論文の概要: Autoregressive neural-network wavefunctions for ab initio quantum
chemistry
- arxiv url: http://arxiv.org/abs/2109.12606v1
- Date: Sun, 26 Sep 2021 13:44:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-28 15:04:42.546898
- Title: Autoregressive neural-network wavefunctions for ab initio quantum
chemistry
- Title(参考訳): ab initio量子化学のための自己回帰ニューラルネットワーク波動関数
- Authors: Thomas D. Barrett, Aleksei Malyshev and A. I. Lvovsky
- Abstract要約: 新しい自己回帰型ニューラルネットワーク(ARN)による電子波動関数のパラメータ化
これにより、最大30個のスピン軌道を持つ分子上で電子構造計算を行うことができる。
- 参考スコア(独自算出の注目度): 3.5987961950527287
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Performing electronic structure calculations is a canonical many-body problem
that has recently emerged as a challenging new paradigm for neural network
quantum states (NNQS). Here, we parameterise the electronic wavefunction with a
novel autoregressive neural network (ARN) that permits highly efficient and
scalable sampling, whilst also embedding physical priors that reflect the
structure of molecular systems without sacrificing expressibility. This allows
us to perform electronic structure calculations on molecules with up to 30
spin-orbitals - which consider multiple orders of magnitude more Slater
determinants than previous applications of conventional NNQS - and we find that
our ansatz can outperform the de-facto gold-standard coupled cluster methods
even in the presence of strong quantum correlations. With a highly expressive
neural network for which sampling is no longer a computational bottleneck, we
conclude that the barriers to further scaling are not associated with the
wavefunction ansatz itself, but rather are inherent to any variational Monte
Carlo approach.
- Abstract(参考訳): 電子構造計算は、ニューラルネットワーク量子状態(NNQS)の挑戦的な新しいパラダイムとして最近登場した標準的な多体問題である。
本稿では,高効率かつスケーラブルなサンプリングを可能にする新しい自己回帰ニューラルネットワーク(ARN)を用いて電子波動関数をパラメータ化するとともに,表現性を犠牲にすることなく分子系の構造を反映した物理先行情報を埋め込む。
これにより、最大30個のスピン軌道を持つ分子の電子構造計算が可能となり、これは従来のnnqsの用途よりも多くのスレーター行列式を考慮し、強い量子相関が存在する場合でも、我々のansatzはデファクトの金標準結合クラスター法を上回ることができることが判明した。
サンプリングがもはや計算ボトルネックにならない高度に表現力のあるニューラルネットワークでは、さらなるスケーリングの障壁は波動関数のアンザッツ自体に関連せず、モンテカルロの変動的なアプローチに固有のものであると結論付ける。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Emergence of global receptive fields capturing multipartite quantum correlations [0.565473932498362]
量子物理学において、波動関数レベルで明確に定義された構造を持つ単純なデータでさえ、非常に複雑な相関によって特徴づけられる。
量子統計学を学習しながら、ニューラルネットワークの重み空間をモニタリングすることで、複雑な多部パターンに関する物理的直観を発達させることができることを示す。
この結果から,非局所パターンを用いたデータ処理のための畳み込みニューラルネットワークの構築について,新たな知見が得られた。
論文 参考訳(メタデータ) (2024-08-23T12:45:40Z) - Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
神経波関数は、計算コストが高いにもかかわらず、多電子系の基底状態の近似において前例のない精度を達成した。
近年の研究では、個々の問題を個別に解くのではなく、様々な構造や化合物にまたがる一般化波動関数を学習することでコストを下げることが提案されている。
この研究は、分子間の一般化に適した過度にパラメータ化され、完全に学習可能なニューラルウェーブ関数を定義することで、この問題に取り組む。
論文 参考訳(メタデータ) (2024-05-23T16:30:51Z) - Information-driven Nonlinear Quantum Neuron [0.0]
本研究では,オープン量子システムとして動作するハードウェア効率の高い量子ニューラルネットワークを提案する。
入力量子情報のパラメトリゼーションが容易な繰り返し相互作用に基づくこの散逸モデルが、微分可能非線形活性化関数を示すことを示す。
論文 参考訳(メタデータ) (2023-07-18T07:12:08Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Scalable neural quantum states architecture for quantum chemistry [5.603379389073144]
量子状態のニューラルネットワーク表現の変分最適化は、相互作用するフェルミオン問題の解決に成功している。
本稿では,Ab-initio量子化学応用のための,ニューラルネットワークに基づく変分量子モンテカルロ計算を改善するための拡張並列化手法を提案する。
論文 参考訳(メタデータ) (2022-08-11T04:40:02Z) - An Application of Quantum Machine Learning on Quantum Correlated
Systems: Quantum Convolutional Neural Network as a Classifier for Many-Body
Wavefunctions from the Quantum Variational Eigensolver [0.0]
最近提案された量子畳み込みニューラルネットワーク(QCNN)は、量子回路を使用するための新しいフレームワークを提供する。
ここでは、一次元逆場イジングモデル(TFIM)に対する変分量子固有解器の波動関数によるQCNNのトレーニング結果を示す。
QCNNは、それから遠く離れた波動関数によって訓練されたとしても、量子臨界点の周りの波動関数の対応する位相を予測するために訓練することができる。
論文 参考訳(メタデータ) (2021-11-09T12:08:49Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
量子ニューラルネットワークは、ユニタリ演算、測定、フィードフォワードの約束を組み合わせることで、量子状態の特定の特徴を認識するように調整され、少ない測定とエラーを許容する。
我々は、7量子ビット超伝導量子プロセッサ上で量子畳み込みニューラルネットワーク(QCNN)を実現し、非ゼロ弦順序パラメータを特徴とするスピンモデルの対称性保護位相を同定する。
その結果,QCNNは有限忠実ゲート自体で構成されているにもかかわらず,用意された状態に対する弦順パラメータの直接測定よりも位相位相を高い忠実度で認識していることがわかった。
論文 参考訳(メタデータ) (2021-09-13T12:32:57Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。