Contextual Decision-Making with Knapsacks Beyond the Worst Case
- URL: http://arxiv.org/abs/2211.13952v2
- Date: Wed, 18 Dec 2024 05:29:19 GMT
- Title: Contextual Decision-Making with Knapsacks Beyond the Worst Case
- Authors: Zhaohua Chen, Rui Ai, Mingwei Yang, Yuqi Pan, Chang Wang, Xiaotie Deng,
- Abstract summary: We study the framework of a dynamic decision-making scenario with resource constraints.<n>In this framework, an agent selects an action in each round upon observing a random request.<n>We prove that our algorithm maintains a near-optimal $widetildeO(sqrtT)$ regret even in the worst cases.
- Score: 5.65888994172721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the framework of a dynamic decision-making scenario with resource constraints. In this framework, an agent, whose target is to maximize the total reward under the initial inventory, selects an action in each round upon observing a random request, leading to a reward and resource consumptions that are further associated with an unknown random external factor. While previous research has already established an $\widetilde{O}(\sqrt{T})$ worst-case regret for this problem, this work offers two results that go beyond the worst-case perspective: one for the worst-case gap between benchmarks and another for logarithmic regret rates. We first show that an $\Omega(\sqrt{T})$ distance between the commonly used fluid benchmark and the online optimum is unavoidable when the former has a degenerate optimal solution. On the algorithmic side, we merge the re-solving heuristic with distribution estimation skills and propose an algorithm that achieves an $\widetilde{O}(1)$ regret as long as the fluid LP has a unique and non-degenerate solution. Furthermore, we prove that our algorithm maintains a near-optimal $\widetilde{O}(\sqrt{T})$ regret even in the worst cases and extend these results to the setting where the request and external factor are continuous. Regarding information structure, our regret results are obtained under two feedback models, respectively, where the algorithm accesses the external factor at the end of each round and at the end of a round only when a non-null action is executed.
Related papers
- Online Fair Allocation of Perishable Resources [1.4952056744888913]
We consider a practically motivated variant of the canonical online fair allocation problem.
A decision-maker has a budget of perishable resources to allocate over a fixed number of rounds.
The goal is to construct a sequence of allocations that is envy-free and efficient.
arXiv Detail & Related papers (2024-06-04T15:14:10Z) - Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback [58.66941279460248]
Learning from human feedback plays an important role in aligning generative models, such as large language models (LLM)
We study a model within this problem domain--contextual dueling bandits with adversarial feedback, where the true preference label can be flipped by an adversary.
We propose an algorithm namely robust contextual dueling bandit (algo), which is based on uncertainty-weighted maximum likelihood estimation.
arXiv Detail & Related papers (2024-04-16T17:59:55Z) - Exploration by Optimization with Hybrid Regularizers: Logarithmic Regret with Adversarial Robustness in Partial Monitoring [41.20252349191698]
Partial monitoring is a generic framework of online decision-making problems with limited feedback.
We present a new framework and analysis for ExO with a hybrid regularizer.
In particular, we derive a regret bound of $O(sum_a neq a*)$, where $k$, $m$, and $T$ are the numbers of actions, observations and rounds.
arXiv Detail & Related papers (2024-02-13T09:34:22Z) - Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits [53.281230333364505]
This paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM)
We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound $tilde Obig(dsqrtsum_t=1Tsigma_t2 + dbig)$.
Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an $tilde O(d)$ regret.
arXiv Detail & Related papers (2023-10-02T08:15:52Z) - Corruption-Robust Algorithms with Uncertainty Weighting for Nonlinear
Contextual Bandits and Markov Decision Processes [59.61248760134937]
We propose an efficient algorithm to achieve a regret of $tildeO(sqrtT+zeta)$.
The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandit.
We generalize our algorithm to the episodic MDP setting and first achieve an additive dependence on the corruption level $zeta$.
arXiv Detail & Related papers (2022-12-12T15:04:56Z) - Risk-averse Contextual Multi-armed Bandit Problem with Linear Payoffs [7.125769932993104]
We consider the contextual multi-armed bandit problem for linear payoffs under a risk-averse criterion.
At each round, contexts are revealed for each arm, and the decision maker chooses one arm to pull and receives the corresponding reward.
We apply the Thompson Sampling algorithm for the disjoint model, and provide a comprehensive regret analysis for a variant of the proposed algorithm.
arXiv Detail & Related papers (2022-06-24T18:48:35Z) - Stochastic Contextual Dueling Bandits under Linear Stochastic
Transitivity Models [25.336599480692122]
We consider the regret minimization task in a dueling bandits problem with context information.
We propose a computationally efficient algorithm, $texttCoLSTIM$, which makes its choice based on imitating the feedback process.
Our experiments demonstrate its superiority over state-of-art algorithms for special cases of CoLST models.
arXiv Detail & Related papers (2022-02-09T17:44:19Z) - Risk-Aware Algorithms for Combinatorial Semi-Bandits [7.716156977428555]
We study the multi-armed bandit problem under semi-bandit feedback.
We consider the problem of maximizing the Conditional Value-at-Risk (CVaR), a risk measure that takes into account only the worst-case rewards.
We propose new algorithms that maximize the CVaR of the rewards obtained from the super arms of the bandit.
arXiv Detail & Related papers (2021-12-02T11:29:43Z) - Linear Contextual Bandits with Adversarial Corruptions [91.38793800392108]
We study the linear contextual bandit problem in the presence of adversarial corruption.
We present a variance-aware algorithm that is adaptive to the level of adversarial contamination $C$.
arXiv Detail & Related papers (2021-10-25T02:53:24Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z) - Navigating to the Best Policy in Markov Decision Processes [68.8204255655161]
We investigate the active pure exploration problem in Markov Decision Processes.
Agent sequentially selects actions and, from the resulting system trajectory, aims at the best as fast as possible.
arXiv Detail & Related papers (2021-06-05T09:16:28Z) - Algorithmic Challenges in Ensuring Fairness at the Time of Decision [6.228560624452748]
Algorithmic decision-making in societal contexts can be framed as optimization under bandit feedback.
Recent lawsuits accuse companies that deploy algorithmic pricing practices of price gouging.
We introduce the well-studied fairness notion of envy-freeness within the context of convex optimization.
arXiv Detail & Related papers (2021-03-16T19:06:28Z) - Near-Optimal Regret Bounds for Contextual Combinatorial Semi-Bandits
with Linear Payoff Functions [53.77572276969548]
We show that the C$2$UCB algorithm has the optimal regret bound $tildeO(dsqrtkT + dk)$ for the partition matroid constraints.
For general constraints, we propose an algorithm that modifies the reward estimates of arms in the C$2$UCB algorithm.
arXiv Detail & Related papers (2021-01-20T04:29:18Z) - Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
Sample Complexity [67.02490430380415]
We show that model-based MARL achieves a sample complexity of $tilde O(|S||B|(gamma)-3epsilon-2)$ for finding the Nash equilibrium (NE) value up to some $epsilon$ error.
We also show that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm is reward-agnostic, where the algorithm queries state transition samples without reward knowledge.
arXiv Detail & Related papers (2020-07-15T03:25:24Z) - Efficient Optimistic Exploration in Linear-Quadratic Regulators via
Lagrangian Relaxation [107.06364966905821]
We study the exploration-exploitation dilemma in the linear quadratic regulator (LQR) setting.
Inspired by the extended value iteration algorithm used in optimistic algorithms for finite MDPs, we propose to relax the optimistic optimization of ofulq.
We show that an $epsilon$-optimistic controller can be computed efficiently by solving at most $Obig(log (1/epsilon)big)$ Riccati equations.
arXiv Detail & Related papers (2020-07-13T16:30:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.