論文の概要: The Economics of Recommender Systems: Evidence from a Field Experiment
on MovieLens
- arxiv url: http://arxiv.org/abs/2211.14219v1
- Date: Fri, 25 Nov 2022 16:31:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 12:38:05.429549
- Title: The Economics of Recommender Systems: Evidence from a Field Experiment
on MovieLens
- Title(参考訳): Recommender Systemsの経済性:MovieLensのフィールド実験からの証拠
- Authors: Guy Aridor, Duarte Goncalves, Daniel Kluver, Ruoyan Kong, Joseph
Konstan
- Abstract要約: 本研究では,映画レコメンデーションプラットフォーム上でフィールド実験を行い,レコメンデーションが消費にどのように影響するかを確認した。
消費者に商品を露出させる役割を超えて、リコメンデーションは消費を増大させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We conduct a field experiment on a movie-recommendation platform to identify
if and how recommendations affect consumption. We use within-consumer
randomization at the good level and elicit beliefs about unconsumed goods to
disentangle exposure from informational effects. We find recommendations
increase consumption beyond its role in exposing goods to consumers. We provide
support for an informational mechanism: recommendations affect consumers'
beliefs, which in turn explain consumption. Recommendations reduce uncertainty
about goods consumers are most uncertain about and induce information
acquisition. Our results highlight the importance of recommender systems'
informational role when considering policies targeting these systems in online
marketplaces.
- Abstract(参考訳): 我々は,映画推薦プラットフォーム上でフィールド実験を行い,レコメンデーションが消費に与える影響を確かめる。
我々は、消費者内ランダム化を良いレベルで使用し、消費されていない商品についての信念を導き出し、情報的効果から露出を外す。
消費者に商品を露出させる役割を超えて、リコメンデーションは消費を増大させる。
我々は、消費者の信念に影響を及ぼし、消費を説明する情報メカニズムの支援を提供する。
勧告は、消費者が最も不確実である商品の不確実性を減少させ、情報取得を誘導する。
本結果は,オンラインマーケットプレースにおけるこれらのシステムを対象とした政策を検討する上で,レコメンデーションシステムの役割の重要性を強調した。
関連論文リスト
- The MovieLens Beliefs Dataset: Collecting Pre-Choice Data for Online Recommender Systems [0.0]
本稿では,未経験項目に対するユーザの信念を収集する手法を提案する。
提案手法はMovieLensプラットフォーム上で実装され,ユーザ評価,信念,監視されたレコメンデーションを組み合わせた豊富なデータセットが得られた。
論文 参考訳(メタデータ) (2024-05-17T19:06:06Z) - Stability of Explainable Recommendation [10.186029242664931]
既存の特徴指向の説明可能なレコメンデーションの脆弱性について検討する。
我々は、全ての説明可能なモデルが騒音レベルの増加に弱いことを観察する。
本研究は,レコメンデーションシステムにおけるロバストな説明の話題について,実証的な検証を行った。
論文 参考訳(メタデータ) (2024-05-03T04:44:51Z) - A First Look at Selection Bias in Preference Elicitation for Recommendation [64.44255178199846]
選好選好における選好バイアスの影響について検討した。
大きなハードルは、好みの推論インタラクションを持つ公開データセットがないことです。
本稿では,トピックに基づく選好提案プロセスのシミュレーションを提案する。
論文 参考訳(メタデータ) (2024-05-01T14:56:56Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
本稿では,様々なレコメンデーションシナリオにおいてフェアネスの概念を提示し,現在の進歩を包括的に分類し,レコメンデーションシステムのさまざまな段階におけるフェアネスを促進するための典型的な手法を紹介する。
次に、フェアネスを意識したレコメンデーションシステムが実業界における産業応用に与える影響について検討する。
論文 参考訳(メタデータ) (2023-06-01T07:08:22Z) - Recommending to Strategic Users [10.079698681921673]
ユーザーは、将来推奨されるコンテンツの種類に影響を与えるために、戦略的にコンテンツを選択する。
本稿では,戦略的消費を考慮した推奨品質向上のための3つの介入を提案する。
論文 参考訳(メタデータ) (2023-02-13T17:57:30Z) - Discussion about Attacks and Defenses for Fair and Robust Recommendation
System Design [0.0]
レコメンデーションシステムは、特定の製品の宣伝やデモを行う偽レビューなど、悪意のあるユーザーの偏見に弱い。
ディープラーニング協調フィルタリングレコメンデーションシステムは、このバイアスに対してより脆弱であることが示されている。
公正と安定のための堅牢なレコメンデーションシステムを設計する必要性について論じる。
論文 参考訳(メタデータ) (2022-09-28T13:00:26Z) - Two-Stage Neural Contextual Bandits for Personalised News Recommendation [50.3750507789989]
既存のパーソナライズされたニュースレコメンデーション手法は、ユーザの興味を搾取することに集中し、レコメンデーションにおける探索を無視する。
我々は、エクスプロイトと探索のトレードオフに対処する文脈的包括的レコメンデーション戦略に基づいて構築する。
我々はユーザとニュースにディープラーニング表現を使用し、ニューラルアッパー信頼境界(UCB)ポリシーを一般化し、加法的 UCB と双線形 UCB を一般化する。
論文 参考訳(メタデータ) (2022-06-26T12:07:56Z) - Causal Disentanglement with Network Information for Debiased
Recommendations [34.698181166037564]
近年の研究では、因果的観点からレコメンデーターシステムをモデル化することで、デビアスを提案する。
この設定における重要な課題は、隠れた共同設立者を説明することだ。
我々は,ネットワーク情報(すなわち,ユーザ・ソーシャルおよびユーザ・イテムネットワーク)を活用して,隠れた共同創設者をよりよく近似することを提案する。
論文 参考訳(メタデータ) (2022-04-14T20:55:11Z) - Heterogeneous Demand Effects of Recommendation Strategies in a Mobile
Application: Evidence from Econometric Models and Machine-Learning
Instruments [73.7716728492574]
本研究では,モバイルチャネルにおける様々なレコメンデーション戦略の有効性と,個々の製品に対する消費者の実用性と需要レベルに与える影響について検討する。
提案手法では, 有効性に有意な差が認められた。
我々は,ユーザ生成レビューのディープラーニングモデルに基づいて,製品分化(アイソレーション)をキャプチャする新しいエコノメトリ機器を開発した。
論文 参考訳(メタデータ) (2021-02-20T22:58:54Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
我々は知識グラフに基づく推薦システムの体系的な調査を行う。
論文は、知識グラフを正確かつ説明可能なレコメンデーションにどのように活用するかに焦点を当てる。
これらの作業で使用されるデータセットを紹介します。
論文 参考訳(メタデータ) (2020-02-28T02:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。