論文の概要: Domain generalization in fetal brain MRI segmentation \\with
multi-reconstruction augmentation
- arxiv url: http://arxiv.org/abs/2211.14282v1
- Date: Fri, 25 Nov 2022 18:29:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 18:13:46.966105
- Title: Domain generalization in fetal brain MRI segmentation \\with
multi-reconstruction augmentation
- Title(参考訳): 肥大化を伴う胎児脳MRIの領域一般化
- Authors: Priscille de Dumast, Meritxell Bach Cuadra
- Abstract要約: そこで本研究では,胎児脳MRIの超解像(SR)再構成手法のパワーを活用して,複数の被験者を再現する手法を提案する。
全体として、後者はSRパイプライン上のセグメンテーション法の一般化を著しく改善する。
- 参考スコア(独自算出の注目度): 0.348097307252416
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quantitative analysis of in utero human brain development is crucial for
abnormal characterization. Magnetic resonance image (MRI) segmentation is
therefore an asset for quantitative analysis. However, the development of
automated segmentation methods is hampered by the scarce availability of fetal
brain MRI annotated datasets and the limited variability within these cohorts.
In this context, we propose to leverage the power of fetal brain MRI
super-resolution (SR) reconstruction methods to generate multiple
reconstructions of a single subject with different parameters, thus as an
efficient tuning-free data augmentation strategy. Overall, the latter
significantly improves the generalization of segmentation methods over SR
pipelines.
- Abstract(参考訳): ヒト子宮内脳の発生の定量的解析は異常な特徴付けに不可欠である。
磁気共鳴画像(mri)のセグメンテーションは定量的解析の資産である。
しかし、胎児脳MRIアノテートデータセットの不足と、これらのコホート内での変動の制限により、自動セグメンテーション法の開発が妨げられている。
そこで本研究では, 胎児脳MRIの超解像再構成手法を用いて, パラメータの異なる1つの被験者を複数回再構成し, 効率的なチューニング不要なデータ拡張戦略を提案する。
全体として、後者はSRパイプライン上のセグメンテーション法の一般化を著しく改善する。
関連論文リスト
- Improving cross-domain brain tissue segmentation in fetal MRI with synthetic data [1.1936126505067601]
胎児脳MRIにおける領域ランダム化手法であるFetal SynthSegを紹介する。
以上の結果から,合成データのみにトレーニングされたモデルは,実データにトレーニングされたモデルよりも優れていた。
評価は低磁場(0.55T)MRIで得られた40例に拡張し,新しいSRモデルを用いて再構成した。
論文 参考訳(メタデータ) (2024-03-22T10:42:25Z) - Anatomically Constrained Tractography of the Fetal Brain [6.112565873653592]
我々は,dMRI空間内での胎児脳組織の正確な分画に基づく解剖学的拘束性トラクトグラフィーを提唱する。
独立試験データを用いて実験したところ、この方法は胎児の脳組織を正確に分画し、トラクトグラフィーの結果を大幅に改善できることがわかった。
論文 参考訳(メタデータ) (2024-03-04T19:56:19Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Diffusion Modeling with Domain-conditioned Prior Guidance for
Accelerated MRI and qMRI Reconstruction [3.083408283778178]
本研究では,ネイティブデータ領域に条件付き拡散モデルに基づく画像再構成手法を提案する。
提案手法は,特に加速係数の高い画像の再構成において,有意義な可能性を証明している。
論文 参考訳(メタデータ) (2023-09-02T01:33:50Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Latent Correlation Representation Learning for Brain Tumor Segmentation
with Missing MRI Modalities [2.867517731896504]
MR画像から正確な脳腫瘍を抽出することが臨床診断と治療計画の鍵となる。
臨床におけるいくつかのイメージングモダリティを見逃すのが一般的です。
本稿では,新しい脳腫瘍分割アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-13T14:21:09Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
本稿では、表現類似度分析(RSA)の深部拡張であるDRSL(Deep Representational similarity Learning)を開発する。
DRSLは、多数の被験者を持つfMRIデータセットにおける様々な認知タスク間の類似性を分析するのに適している。
論文 参考訳(メタデータ) (2020-09-28T18:30:14Z) - Deep Attentive Wasserstein Generative Adversarial Networks for MRI
Reconstruction with Recurrent Context-Awareness [5.474237208776356]
圧縮センシングベースMRI(CS-MRI)の再生性能は,その遅い反復法とノイズによるアーチファクトの影響を受けている。
本稿では,WGAN(Wasserstein Generative Adversarial Networks)とリカレントニューラルネットワーク(Recurrent Neural Networks)を結合することにより,逐次MRIスライス間の関係をフル活用する,深層学習に基づくCS-MRI再構成手法を提案する。
論文 参考訳(メタデータ) (2020-06-23T11:50:21Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。