論文の概要: Neural DAEs: Constrained neural networks
- arxiv url: http://arxiv.org/abs/2211.14302v3
- Date: Sun, 21 May 2023 09:28:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 04:56:03.542430
- Title: Neural DAEs: Constrained neural networks
- Title(参考訳): ニューラルDAE:拘束型ニューラルネットワーク
- Authors: Tue Boesen, Eldad Haber, Uri Michael Ascher
- Abstract要約: 我々はいくつかの基本的なシナリオの違いにもかかわらず、残差ニューラルネットワークに関連した手法を実装した。
マルチボディ振り子と分子動力学シナリオのシミュレーションを含む実験に基づいて,どの手法をいつ使うかを示す。
既存のコードで実装するのは簡単で、トレーニングのパフォーマンスに制限がある一方、推論の面では大幅に向上しています。
- 参考スコア(独自算出の注目度): 3.4161707164978132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article investigates the effect of explicitly adding auxiliary algebraic
trajectory information to neural networks for dynamical systems. We draw
inspiration from the field of differential-algebraic equations and differential
equations on manifolds and implement related methods in residual neural
networks, despite some fundamental scenario differences. Constraint or
auxiliary information effects are incorporated through stabilization as well as
projection methods, and we show when to use which method based on experiments
involving simulations of multi-body pendulums and molecular dynamics scenarios.
Several of our methods are easy to implement in existing code and have limited
impact on training performance while giving significant boosts in terms of
inference.
- Abstract(参考訳): 本稿では,動的システムのニューラルネットワークに補助的代数的軌道情報を明示的に付加する効果について検討する。
微分代数方程式と多様体上の微分方程式の分野からインスピレーションを得て、いくつかの基本的なシナリオの違いにもかかわらず、残留ニューラルネットワークで関連する手法を実装した。
拘束的あるいは補助的な情報効果は, 安定化法や投影法によって組み込まれ, 多体振り子と分子動力学シナリオのシミュレーションを含む実験に基づいて, どのような手法を使うかを示す。
私たちのメソッドのいくつかは、既存のコードで簡単に実装でき、トレーニングパフォーマンスへの影響は限られています。
関連論文リスト
- Projected Neural Differential Equations for Learning Constrained Dynamics [3.570367665112327]
本稿では,学習ベクトル場の射影を制約多様体の接空間に向けることで,ニューラル微分方程式を制約する新しい手法を提案する。
PNDEは、ハイパーパラメータを少なくしながら、既存のメソッドよりも優れています。
提案手法は、制約付き力学系のモデリングを強化する重要な可能性を示す。
論文 参考訳(メタデータ) (2024-10-31T06:32:43Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Deep Learning-based Analysis of Basins of Attraction [49.812879456944984]
本研究は,様々な力学系における盆地の複雑さと予測不可能性を特徴づけることの課題に対処する。
主な焦点は、この分野における畳み込みニューラルネットワーク(CNN)の効率性を示すことである。
論文 参考訳(メタデータ) (2023-09-27T15:41:12Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
本研究では,高次元偏微分方程式を数値的に解くために,能動的学習を用いた学習データを生成するディープラーニングに基づくニューラル・ガレルキンスキームを提案する。
ニューラル・ガレルキンスキームはディラック・フランケル変分法に基づいて、残余を時間とともに最小化することで、ネットワークを訓練する。
提案したニューラル・ガレルキン・スキームの学習データ収集は,高次元におけるネットワークの表現力を数値的に実現するための鍵となる。
論文 参考訳(メタデータ) (2022-03-02T19:09:52Z) - DAE-PINN: A Physics-Informed Neural Network Model for Simulating
Differential-Algebraic Equations with Application to Power Networks [8.66798555194688]
DAE-PINNは非線形微分代数方程式の解軌跡を学習し、シミュレーションするための最初の効果的なディープラーニングフレームワークである。
我々のフレームワークは、ペナルティベースの手法を用いて、DAEを(近似的に)厳しい制約として満たすためにニューラルネットワークを強制する。
DAE-PINNの有効性と精度を3バス電力ネットワークの解軌跡を学習・シミュレーションすることで示す。
論文 参考訳(メタデータ) (2021-09-09T14:30:28Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Finite Difference Neural Networks: Fast Prediction of Partial
Differential Equations [5.575293536755126]
データから偏微分方程式を学習するための新しいニューラルネットワークフレームワークである有限差分ニューラルネットワーク(FDNet)を提案する。
具体的には、トラジェクトリデータから基礎となる偏微分方程式を学習するために提案した有限差分ネットワークを設計する。
論文 参考訳(メタデータ) (2020-06-02T19:17:58Z) - Physics-based polynomial neural networks for one-shot learning of
dynamical systems from one or a few samples [0.0]
本論文は, 単純な振り子と世界最大規模のX線源の双方について, 実測結果について述べる。
提案手法により, ノイズ, 制限, 部分的な観測から複雑な物理を復元することができることが実証された。
論文 参考訳(メタデータ) (2020-05-24T09:27:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。