論文の概要: Projected Neural Differential Equations for Learning Constrained Dynamics
- arxiv url: http://arxiv.org/abs/2410.23667v1
- Date: Thu, 31 Oct 2024 06:32:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:02:37.930457
- Title: Projected Neural Differential Equations for Learning Constrained Dynamics
- Title(参考訳): 学習制約ダイナミクスのための予測ニューラル微分方程式
- Authors: Alistair White, Anna Büttner, Maximilian Gelbrecht, Valentin Duruisseaux, Niki Kilbertus, Frank Hellmann, Niklas Boers,
- Abstract要約: 本稿では,学習ベクトル場の射影を制約多様体の接空間に向けることで,ニューラル微分方程式を制約する新しい手法を提案する。
PNDEは、ハイパーパラメータを少なくしながら、既存のメソッドよりも優れています。
提案手法は、制約付き力学系のモデリングを強化する重要な可能性を示す。
- 参考スコア(独自算出の注目度): 3.570367665112327
- License:
- Abstract: Neural differential equations offer a powerful approach for learning dynamics from data. However, they do not impose known constraints that should be obeyed by the learned model. It is well-known that enforcing constraints in surrogate models can enhance their generalizability and numerical stability. In this paper, we introduce projected neural differential equations (PNDEs), a new method for constraining neural differential equations based on projection of the learned vector field to the tangent space of the constraint manifold. In tests on several challenging examples, including chaotic dynamical systems and state-of-the-art power grid models, PNDEs outperform existing methods while requiring fewer hyperparameters. The proposed approach demonstrates significant potential for enhancing the modeling of constrained dynamical systems, particularly in complex domains where accuracy and reliability are essential.
- Abstract(参考訳): 神経微分方程式は、データから力学を学ぶための強力なアプローチを提供する。
しかし、学習モデルに従わなければならない既知の制約を課すことはない。
代理モデルの制約を強制することは、一般化可能性や数値安定性を高めることが知られている。
本稿では,学習ベクトル場から制約多様体の接空間への射影に基づくニューラル微分方程式を制約する新しい手法であるニューラル微分方程式(PNDE)を提案する。
カオス力学系や最先端電力グリッドモデルなど、いくつかの挑戦的な例のテストでは、PNDEはハイパーパラメータを少なくしながら既存の手法より優れている。
提案手法は、特に精度と信頼性が不可欠である複雑な領域において、制約付き力学系のモデリングを強化する重要な可能性を示す。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Semi-Supervised Learning of Dynamical Systems with Neural Ordinary
Differential Equations: A Teacher-Student Model Approach [10.20098335268973]
TS-NODEは、NODEで動的システムのモデリングを行うための、最初の半教師付きアプローチである。
複数の動的システムモデリングタスクにおいて,ベースラインのNeural ODEモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-19T19:17:12Z) - Stabilized Neural Differential Equations for Learning Dynamics with
Explicit Constraints [4.656302602746229]
そこで我々は, ニューラルネットワーク微分方程式に対する任意の多様体制約を強制するために, 安定化されたニューラル微分方程式(SNDE)を提案する。
我々のアプローチは安定化項に基づいており、元の力学に加えると、制約多様体は確実に安定である。
その単純さのため、我々の手法はすべての共通神経微分方程式(NDE)モデルと互換性があり、広く適用できる。
論文 参考訳(メタデータ) (2023-06-16T10:16:59Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Approximate Latent Force Model Inference [1.3927943269211591]
潜在力モデルは、動的システムにおける推論のための純粋にデータ駆動ツールの解釈可能な代替手段を提供する。
ニューラルネットワークのアプローチは、モデルを数千のインスタンスにスケールし、高速で分散的な計算を可能にします。
論文 参考訳(メタデータ) (2021-09-24T09:55:00Z) - Accelerating Neural ODEs Using Model Order Reduction [0.0]
本稿では,ニューラルネットワークの圧縮と高速化に数学的モデルオーダー削減法が利用できることを示す。
我々は,ニューラルネットワークの層として必要な部分空間投影と操作を統合するニューラルODEを開発することで,新しい圧縮手法を実装した。
論文 参考訳(メタデータ) (2021-05-28T19:27:09Z) - Constrained Neural Ordinary Differential Equations with Stability
Guarantees [1.1086440815804224]
代数的非線形性を持つ離散常微分方程式をディープニューラルネットワークとしてモデル化する方法を示す。
我々は、重みの固有値に課される暗黙の制約に基づいて、ネットワーク層の安定性を保証する。
オープンループシミュレーションを用いて,学習したニューラルネットワークの予測精度を検証した。
論文 参考訳(メタデータ) (2020-04-22T22:07:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。