論文の概要: Optimal Approximation Rates for Deep ReLU Neural Networks on Sobolev
Spaces
- arxiv url: http://arxiv.org/abs/2211.14400v1
- Date: Fri, 25 Nov 2022 23:32:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 16:59:52.532632
- Title: Optimal Approximation Rates for Deep ReLU Neural Networks on Sobolev
Spaces
- Title(参考訳): ソボレフ空間上の深層reluニューラルネットワークの最適近似速度
- Authors: Jonathan W. Siegel
- Abstract要約: 本稿では,パラメータ数の観点から,ReLUアクティベーション関数を持つディープニューラルネットワークがソボレフ空間の関数をどの程度効率的に近似できるかを考察する。
以上の結果から,深いReLUネットワークは古典的近似法よりも優れているが,これは符号化不可能なパラメータのコストがかかることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of how efficiently, in terms of the number of
parameters, deep neural networks with the ReLU activation function can
approximate functions in the Sobolev space $W^s(L_q(\Omega))$ on a bounded
domain $\Omega$, where the error is measured in $L_p(\Omega)$. This problem is
important for studying the application of neural networks in scientific
computing and has previously been solved only in the case $p=q=\infty$. Our
contribution is to provide a solution for all $1\leq p,q\leq \infty$ and $s >
0$. Our results show that deep ReLU networks significantly outperform classical
methods of approximation, but that this comes at the cost of parameters which
are not encodable.
- Abstract(参考訳): パラメータ数の観点から、ReLUアクティベーション関数を持つディープニューラルネットワークがソボレフ空間$W^s(L_q(\Omega))$の有界領域$\Omega$の関数をいかに効率的に近似できるかを研究し、その誤差を$L_p(\Omega)$で測定する。
この問題は、科学計算におけるニューラルネットワークの応用を研究する上で重要であり、以前は$p=q=infty$の場合のみ解決されていた。
私たちの貢献は、$1\leq p,q\leq \infty$と$s > 0$に対するソリューションを提供することです。
以上の結果から,深いReLUネットワークは古典的近似法よりも優れているが,これは符号化不可能なパラメータのコストがかかることが示唆された。
関連論文リスト
- Learning Networks from Wide-Sense Stationary Stochastic Processes [7.59499154221528]
ここでの重要な推論問題は、ノード出力(ポテンシャル)からエッジ接続を学習することである。
我々はWhittleの最大可能性推定器(MLE)を用いて時間相関サンプルから$Last$のサポートを学習する。
MLE問題は厳密な凸であり、ユニークな解であることを示す。
論文 参考訳(メタデータ) (2024-12-04T23:14:00Z) - Deep Neural Networks: Multi-Classification and Universal Approximation [0.0]
我々は,幅2ドル,深さ2N+4M-1$のReLUディープニューラルネットワークが,$N$要素からなる任意のデータセットに対して有限標本記憶を達成できることを実証した。
また、$W1,p$関数を近似するための深さ推定と$Lp(Omega;mathbbRm)$ for $mgeq1$を近似するための幅推定も提供する。
論文 参考訳(メタデータ) (2024-09-10T14:31:21Z) - On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks [2.4112990554464235]
我々は、$mathcalO((WL)-2s/d)$が実際にソボレフ埋め込み条件の下で成り立つことを示す。
我々の証明の鍵となるツールは、幅と深さの異なる深部ReLUニューラルネットワークを用いてスパースベクトルを符号化することである。
論文 参考訳(メタデータ) (2024-09-02T02:26:01Z) - Approximation Rates for Shallow ReLU$^k$ Neural Networks on Sobolev Spaces via the Radon Transform [4.096453902709292]
我々は,ReLU$k$アクティベーション関数がソボレフ空間からの関数をいかに効率的に近似できるかという問題を考察する。
例えば、$qleq p$, $pgeq 2$, $s leq k + (d+1)/2$ などである。
論文 参考訳(メタデータ) (2024-08-20T16:43:45Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
単一インデックス対象関数 $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ の勾配勾配勾配学習問題について検討する。
SGDに基づくアルゴリズムにより最適化された2層ニューラルネットワークは、情報指数に支配されない複雑さで$f_*$を学習する。
論文 参考訳(メタデータ) (2024-06-03T17:56:58Z) - Optimal and Efficient Algorithms for Decentralized Online Convex Optimization [51.00357162913229]
分散オンライン凸最適化(D-OCO)は、局所計算と通信のみを用いて、グローバルな損失関数の列を最小化するように設計されている。
我々は,凸関数と強凸関数の残差を$tildeO(nrho-1/4sqrtT)$と$tildeO(nrho-1/2log T)$に削減できる新しいD-OCOアルゴリズムを開発した。
我々の分析によると、射影自由多様体は$O(nT3/4)$と$O(n)を達成できる。
論文 参考訳(メタデータ) (2024-02-14T13:44:16Z) - Geometric structure of shallow neural networks and constructive ${\mathcal L}^2$ cost minimization [1.189367612437469]
隠れた1つの層を持つ浅層ニューラルネットワーク、ReLUアクティベーション関数、$mathcal L2$ Schattenクラス(Hilbert-Schmidt)のコスト関数を考える。
我々は、$O(delta_P)$のコスト関数の最小値に対して、$delta_P$の信号とトレーニング入力のノイズ比を測る上限を証明した。
特別の場合、$M=Q$ において、コスト関数の正確な退化局所極小を明示的に決定し、そのシャープ値が a の$Qleq M$ に対して得られる上限値と異なることを示す。
論文 参考訳(メタデータ) (2023-09-19T07:12:41Z) - Understanding Deep Neural Function Approximation in Reinforcement
Learning via $\epsilon$-Greedy Exploration [53.90873926758026]
本稿では、強化学習(RL)における深部神経機能近似の理論的研究について述べる。
我々は、Besov(およびBarron)関数空間によって与えられるディープ(および2層)ニューラルネットワークによる$epsilon$-greedy探索により、バリューベースのアルゴリズムに焦点を当てる。
我々の解析は、ある平均測度$mu$の上の$L2(mathrmdmu)$-integrable空間における時間差誤差を再構成し、非イド設定の下で一般化問題に変換する。
論文 参考訳(メタデータ) (2022-09-15T15:42:47Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
我々は,バンディットフィードバックを用いてオンライン学習を学習する。
learnerは、コスト/リワード関数が"pseudo-1d"構造を許可するゼロ次オラクルのみにアクセスできる。
我々は、$T$がラウンドの数である任意のアルゴリズムの後悔のために$min(sqrtdT、T3/4)$の下限を示しています。
ランダム化オンライングラデーション下降とカーネル化指数重み法を組み合わせた新しいアルゴリズムsbcalgを提案し,疑似-1d構造を効果的に活用する。
論文 参考訳(メタデータ) (2021-02-15T08:16:51Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z) - On the Modularity of Hypernetworks [103.1147622394852]
構造化対象関数の場合、ハイパーネットワークにおけるトレーニング可能なパラメータの総数は、標準ニューラルネットワークのトレーニング可能なパラメータの数や埋め込み法よりも桁違いに小さいことを示す。
論文 参考訳(メタデータ) (2020-02-23T22:51:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。