論文の概要: Emerging trends in machine learning for computational fluid dynamics
- arxiv url: http://arxiv.org/abs/2211.15145v1
- Date: Mon, 28 Nov 2022 08:56:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 20:45:57.636102
- Title: Emerging trends in machine learning for computational fluid dynamics
- Title(参考訳): 計算流体力学における機械学習の新興動向
- Authors: Ricardo Vinuesa and Steve Brunton
- Abstract要約: 我々は、機械学習の新たなトレンドが、計算流体力学の分野を改善する機会を提供していることに焦点をあてる。
特に、すでに利益を示しているMLとCFDの相乗効果について論じる。
開発中の分野も評価し、今後数年で重要なメリットをもたらす可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The renewed interest from the scientific community in machine learning (ML)
is opening many new areas of research. Here we focus on how novel trends in ML
are providing opportunities to improve the field of computational fluid
dynamics (CFD). In particular, we discuss synergies between ML and CFD that
have already shown benefits, and we also assess areas that are under
development and may produce important benefits in the coming years. We believe
that it is also important to emphasize a balanced perspective of cautious
optimism for these emerging approaches
- Abstract(参考訳): 機械学習(ml)の科学コミュニティからの新たな関心は、多くの新しい研究分野を開いている。
ここでは、計算流体力学(CFD)の分野を改善する機会を提供するMLの新たなトレンドに焦点を当てる。
特に,すでに利益を示しているMLとCFDの相乗効果について論じるとともに,現在開発中であり,今後数年で重要な利益をもたらす可能性のある領域も評価する。
我々は、これらの新興アプローチに対する慎重な楽観主義のバランスのとれた視点を強調することも重要であると信じている。
関連論文リスト
- Machine Learning Innovations in CPR: A Comprehensive Survey on Enhanced Resuscitation Techniques [52.71395121577439]
心肺蘇生(CPR)における機械学習(ML)と人工知能(AI)の変革的役割について検討する。
再現結果を改善する上で、予測モデリング、AI強化デバイス、リアルタイムデータ分析の影響を強調している。
本稿は、この新興分野における現在の応用、課題、今後の方向性に関する包括的概要、分類、および批判的分析を提供する。
論文 参考訳(メタデータ) (2024-11-03T18:01:50Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Investigating Continual Pretraining in Large Language Models: Insights
and Implications [9.591223887442704]
本稿では,大規模言語モデル(LLM)における継続学習の進化領域について考察する。
我々の主な重点は、LLMに様々なドメインからの新たな情報を統合する能力を持たせるために設計された、連続的なドメイン適応型事前訓練である。
モデルサイズが学習の効率性や忘れに及ぼす影響や、新興ドメインの進行と類似性がこれらのモデル内の知識伝達に与える影響について検討する。
論文 参考訳(メタデータ) (2024-02-27T10:47:24Z) - A Paradigm Shift: The Future of Machine Translation Lies with Large Language Models [55.42263732351375]
深層ニューラルネットワークの発展により、機械翻訳は長年にわたって大きく進歩してきた。
GPT-4やChatGPTのような大規模言語モデル(LLM)の出現は、MTドメインに新しいフェーズを導入している。
我々は、Long-Document Translation、Stylized Translation、Interactive TranslationなどのシナリオにおけるLLMの利点を強調し、新しいMT方向を強調した。
論文 参考訳(メタデータ) (2023-05-02T03:27:27Z) - Improving aircraft performance using machine learning: a review [57.82442188072833]
本稿では,航空宇宙工学の多分野に影響を及ぼす機械学習(ML)の新たな展開について概説する。
我々は、さまざまな航空宇宙分野にまたがるML手法の利点と課題を整理し、技術の現状を概観する。
論文 参考訳(メタデータ) (2022-10-20T07:16:53Z) - Opportunities for Machine Learning to Accelerate Halide Perovskite
Commercialization and Scale-Up [5.5532399751725]
ハロゲン化ペロブスカイトの商業化を妨げる実用的課題を概観する。
機械学習(ML)ツールがどのように役立つかについて論じる。
MLツールを特定の業界のニーズに適応させる上で、業界と学術のパートナーシップがいかに役立つかを提案する。
論文 参考訳(メタデータ) (2021-10-08T06:35:46Z) - The Potential of Machine Learning to Enhance Computational Fluid
Dynamics [0.696194614504832]
機械学習は、科学コンピューティングの中核技術になりつつある。
本稿では, 直接数値シミュレーションの高速化など, 影響の大きい分野をいくつか取り上げる。
コミュニティは、オープンソースソフトウェアのためのベンチマークシステムとベストプラクティスを引き続き確立することが不可欠である。
論文 参考訳(メタデータ) (2021-10-05T14:34:16Z) - Bridging observation, theory and numerical simulation of the ocean using
Machine Learning [0.08155575318208629]
海洋の研究は、MLが対処できるユニークな課題の組み合わせを示しています。
利用可能な観測データは、ほとんど空間的に希薄であり、表面に限定されており、数十年以上に及ぶ時系列は少ない。
このレビューでは、MLを適用することで提供される現在の科学的洞察と、差し迫った潜在能力の所在を論じる。
論文 参考訳(メタデータ) (2021-04-26T12:11:51Z) - Machine Learning Force Fields [54.48599172620472]
機械学習(ML)は、計算化学の多くの進歩を可能にした。
最も有望な応用の1つは、MLベースの力場(FF)の構築である。
本稿では,ML-FFの応用と,それらから得られる化学的知見について概説する。
論文 参考訳(メタデータ) (2020-10-14T13:14:14Z) - A Survey on Concept Factorization: From Shallow to Deep Representation
Learning [104.78577405792592]
概念因子化(CF)は、機械学習とデータマイニングの分野で大きな関心を集めています。
まず、ルートCF法を再検討し、CFに基づく表現学習の進歩について検討する。
また、CFベースの手法の潜在的な適用領域についても紹介する。
論文 参考訳(メタデータ) (2020-07-31T04:19:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。