論文の概要: Machine-learning-assisted construction of appropriate rotating frame
- arxiv url: http://arxiv.org/abs/2211.15269v3
- Date: Mon, 12 Dec 2022 09:43:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-17 15:09:33.860439
- Title: Machine-learning-assisted construction of appropriate rotating frame
- Title(参考訳): 機械学習による適切な回転フレームの構築
- Authors: Yoshihiro Michishita
- Abstract要約: 本稿では,機械学習を用いた解析手法を提案する。
我々は、リカレントニューラルネットワークがFloquet-Magnus拡張を導出できることを実証する。
また,本手法は,他のシステムにおける理論的枠組みの発見にも適用可能であると論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning with neural networks is now becoming a more and more
powerful tool for various tasks, such as natural language processing, image
recognition, winning the game, and even for the issues of physics. Although
there are many studies on the application of machine learning to numerical
calculation and the assistance of experimental detection, the methods of
applying machine learning to find the analytical method are poorly studied. In
this letter, we propose methods to use machine learning to find the analytical
methods. We demonstrate that the recurrent neural networks can ``derive'' the
Floquet-Magnus expansion just by inputting the time-periodic Hamiltonian to the
neural networks, and derive the appropriate rotating frame in the
periodically-driven system. We also argue that this method is also applicable
to finding other theoretical frameworks in other systems.
- Abstract(参考訳): ニューラルネットワークによる機械学習は、自然言語処理、画像認識、ゲーム勝利、さらには物理学の問題など、さまざまなタスクのための、ますます強力なツールになりつつある。
数値計算への機械学習の適用と実験的な検出の支援については,多くの研究があるが,解析手法の発見に機械学習を適用する方法はあまり研究されていない。
本稿では,機械学習を用いて解析手法を見つける手法を提案する。
本研究では,時間周期ハミルトニアンをニューラルネットワークに入力するだけで,フロッケマグヌス展開を‘導出’することができることを実証し,周期駆動系の適切な回転フレームを導出する。
また,本手法は,他のシステムにおける理論的枠組みの発見にも適用可能であると論じる。
関連論文リスト
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - Detecting Moving Objects With Machine Learning [0.0]
本章では、天体画像中の移動物体を見つけるための機械学習技術の使用について概説する。
オーバーフィッティング(overfitting)の重要な問題についての議論を含む、機械学習技術の使用に関するさまざまな落とし穴について論じる。
論文 参考訳(メタデータ) (2024-05-10T00:13:39Z) - Application-Driven Innovation in Machine Learning [56.85396167616353]
機械学習におけるアプリケーション駆動研究のパラダイムについて述べる。
このアプローチがメソッド駆動の作業と生産的に相乗効果を示す。
このようなメリットにもかかわらず、マシンラーニングにおけるレビュー、採用、教育のプラクティスが、アプリケーション主導のイノベーションを後押しすることが多いことに気付きます。
論文 参考訳(メタデータ) (2024-03-26T04:59:27Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Deep Learning Meets Sparse Regularization: A Signal Processing
Perspective [17.12783792226575]
データに適合するように訓練されたニューラルネットワークの機能特性を特徴付ける数学的枠組みを提案する。
このフレームワークをサポートする主要な数学的ツールは、変換領域スパース正規化、計算トモグラフィーのラドン変換、近似理論である。
このフレームワークは、ニューラルネットワークトレーニングにおける重量減衰正則化の効果、ネットワークアーキテクチャにおけるスキップ接続と低ランク重量行列の使用、ニューラルネットワークにおける空間性の役割、そしてニューラルネットワークが高次元問題でうまく機能する理由を説明する。
論文 参考訳(メタデータ) (2023-01-23T17:16:21Z) - The Physics of Machine Learning: An Intuitive Introduction for the
Physical Scientist [0.0]
この記事では、機械学習アルゴリズムに関する深い洞察を得たいと願う物理科学者を対象としている。
まず、エネルギーベースの2つの機械学習アルゴリズム、ホップフィールドネットワークとボルツマンマシンのレビューと、Isingモデルとの関係について述べる。
次に、フィードフォワードニューラルネットワーク、畳み込みニューラルネットワーク、オートエンコーダを含む、さらに"実践的"な機械学習アーキテクチャを掘り下げます。
論文 参考訳(メタデータ) (2021-11-27T15:12:42Z) - Measuring and modeling the motor system with machine learning [117.44028458220427]
モーターシステムの理解における機械学習の有用性は、データの収集、測定、分析の方法に革命をもたらすことを約束している。
本稿では, ポーズ推定, 運動解析, 次元減少, 閉ループフィードバックから, ニューラル相関の理解, 機能停止まで, 機械学習の利用の増大について論じる。
論文 参考訳(メタデータ) (2021-03-22T12:42:16Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。