論文の概要: The Physics of Machine Learning: An Intuitive Introduction for the
Physical Scientist
- arxiv url: http://arxiv.org/abs/2112.00851v1
- Date: Sat, 27 Nov 2021 15:12:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-06 00:45:27.650043
- Title: The Physics of Machine Learning: An Intuitive Introduction for the
Physical Scientist
- Title(参考訳): 機械学習の物理:物理科学者のための直感的入門
- Authors: Stephon Alexander, Sarah Bawabe, Batia Friedman-Shaw, Michael W.
Toomey
- Abstract要約: この記事では、機械学習アルゴリズムに関する深い洞察を得たいと願う物理科学者を対象としている。
まず、エネルギーベースの2つの機械学習アルゴリズム、ホップフィールドネットワークとボルツマンマシンのレビューと、Isingモデルとの関係について述べる。
次に、フィードフォワードニューラルネットワーク、畳み込みニューラルネットワーク、オートエンコーダを含む、さらに"実践的"な機械学習アーキテクチャを掘り下げます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article is intended for physical scientists who wish to gain deeper
insights into machine learning algorithms which we present via the domain they
know best, physics. We begin with a review of two energy-based machine learning
algorithms, Hopfield networks and Boltzmann machines, and their connection to
the Ising model. This serves as a foundation to understand the phenomenon of
learning more generally. Equipped with this intuition we then delve into
additional, more "practical," machine learning architectures including
feedforward neural networks, convolutional neural networks, and autoencoders.
We also provide code that explicitly demonstrates training a neural network
with gradient descent.
- Abstract(参考訳): この記事では、我々が最もよく知っている分野、物理学を通じて提示する機械学習アルゴリズムについて深い洞察を得たい物理科学者を対象としています。
まず、エネルギーベースの機械学習アルゴリズムであるホップフィールドネットワークとボルツマンマシンのレビューと、Isingモデルとの関係について述べる。
これは学習の現象をより一般に理解するための基礎となる。
この直観を備えることで、feedforwardニューラルネットワーク、畳み込みニューラルネットワーク、オートエンコーダといった、さらに"実践的"な機械学習アーキテクチャを探求します。
また、勾配勾配によるニューラルネットワークのトレーニングを明示的に示すコードも提供しています。
関連論文リスト
- Collective variables of neural networks: empirical time evolution and scaling laws [0.535514140374842]
実験的なニューラル・タンジェント・カーネルのスペクトル、特にエントロピーとトレースのスペクトルに対する特定の測定により、ニューラルネットワークが学習した表現についての洞察が得られることを示す。
結果は、トランスフォーマー、オートエンコーダ、グラフニューラルネットワーク、強化学習研究など、より複雑なネットワークで示される前に、まずテストケースで実証される。
論文 参考訳(メタデータ) (2024-10-09T21:37:14Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - What is an equivariant neural network? [11.107386212926702]
コンピュータビジョンのための深層畳み込みニューラルネットワークから、タンパク質構造予測のためのAlphaFold 2まで、機械学習におけるブレークスルーの基礎となる概念である同変ニューラルネットワークについて説明する。
基本的な数学的アイデアは単純であるが、実践的な実現をもたらす工学的な複雑さによってしばしば曖昧にされる。
論文 参考訳(メタデータ) (2022-05-15T19:24:12Z) - A photonic chip-based machine learning approach for the prediction of
molecular properties [11.55177943027656]
フォトニックチップ技術は、より高速なデータ処理と低エネルギー使用量でニューラルネットワークを実装するための代替プラットフォームを提供する。
分子の量子力学特性の予測におけるフォトニックニューラルネットワークの有用性を実証する。
我々の研究は、分子科学における大規模機械学習応用にフォトニック技術を活用するための道を開く。
論文 参考訳(メタデータ) (2022-03-03T03:15:14Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Deep physical neural networks enabled by a backpropagation algorithm for
arbitrary physical systems [3.7785805908699803]
本稿では,ディープニューラルネットワークモデルを実現するための急進的な代替手段を提案する。
ニューラルネットとして機能する制御可能な物理システムのシーケンスを効率的に学習するために,物理認識トレーニングと呼ばれるハイブリッド物理デジタルアルゴリズムを導入する。
論文 参考訳(メタデータ) (2021-04-27T18:00:02Z) - Measuring and modeling the motor system with machine learning [117.44028458220427]
モーターシステムの理解における機械学習の有用性は、データの収集、測定、分析の方法に革命をもたらすことを約束している。
本稿では, ポーズ推定, 運動解析, 次元減少, 閉ループフィードバックから, ニューラル相関の理解, 機能停止まで, 機械学習の利用の増大について論じる。
論文 参考訳(メタデータ) (2021-03-22T12:42:16Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Machine Learning and Quantum Devices [0.0]
簡単な講義ノートには、ニューラルネットワークとディープラーニングの基礎について書かれている。
講義ノートは、ニューラルネットワークやディープラーニングに関する事前知識のない物理学者を対象としている。
論文 参考訳(メタデータ) (2021-01-05T19:48:24Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。