論文の概要: CaloMan: Fast generation of calorimeter showers with density estimation
on learned manifolds
- arxiv url: http://arxiv.org/abs/2211.15380v1
- Date: Wed, 23 Nov 2022 19:00:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 14:14:40.518534
- Title: CaloMan: Fast generation of calorimeter showers with density estimation
on learned manifolds
- Title(参考訳): CaloMan: 学習多様体上の密度推定によるカロリーメータシャワーの高速発生
- Authors: Jesse C. Cresswell, Brendan Leigh Ross, Gabriel Loaiza-Ganem, Humberto
Reyes-Gonzalez, Marco Letizia, Anthony L. Caterini
- Abstract要約: 計算に高価なシミュレーションのほとんどは、カロリーメータのシャワーを含む。
深部生成モデルにより、物理に基づくシミュレーションよりもはるかに早く、リアルなカロリーメータのシャワーを発生させることができる。
まず、その多様体構造を学習し、次にこの多様体にまたがるデータの密度を推定することで、熱量計のシャワーをモデル化する。
- 参考スコア(独自算出の注目度): 10.089611750812391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precision measurements and new physics searches at the Large Hadron Collider
require efficient simulations of particle propagation and interactions within
the detectors. The most computationally expensive simulations involve
calorimeter showers. Advances in deep generative modelling - particularly in
the realm of high-dimensional data - have opened the possibility of generating
realistic calorimeter showers orders of magnitude more quickly than
physics-based simulation. However, the high-dimensional representation of
showers belies the relative simplicity and structure of the underlying physical
laws. This phenomenon is yet another example of the manifold hypothesis from
machine learning, which states that high-dimensional data is supported on
low-dimensional manifolds. We thus propose modelling calorimeter showers first
by learning their manifold structure, and then estimating the density of data
across this manifold. Learning manifold structure reduces the dimensionality of
the data, which enables fast training and generation when compared with
competing methods.
- Abstract(参考訳): 大型ハドロン衝突型加速器の精密測定と新しい物理探索は、検出器内の粒子の伝播と相互作用の効率的なシミュレーションを必要とする。
最も計算コストの高いシミュレーションはカロリメータシャワーである。
深部生成モデル(特に高次元データの領域における)の進歩は、物理学に基づくシミュレーションよりもはるかに早くリアルなカロリーメータシャワーを発生させる可能性を開いた。
しかし、シャワーの高次元表現は、基礎となる物理法則の相対的な単純さと構造をもたらす。
この現象は、低次元多様体上で高次元データが支持されるという機械学習による多様体仮説の別の例である。
そこで我々はまず,その多様体構造を学習し,次にこの多様体にまたがるデータの密度を推定することによって,熱量計のシャワーをモデル化する。
多様体構造を学習するとデータの次元性が減少し、競合する手法と比較して高速なトレーニングと生成が可能となる。
関連論文リスト
- A Comprehensive Evaluation of Generative Models in Calorimeter Shower Simulation [0.0]
ファストシミュレーション」は計算ボトルネックを克服する上で重要な役割を担っている。
深部生成モデルの使用により、検出器シミュレーションのための代理モデルへの関心が高まった。
評価の結果,CaloDiffusionおよびCaloScore生成モデルが最も正確な粒子シャワーシミュレーションを行った。
論文 参考訳(メタデータ) (2024-06-08T11:17:28Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Comparison of Point Cloud and Image-based Models for Calorimeter Fast
Simulation [48.26243807950606]
2つの最先端スコアベースのモデルが、同じカロリーメータのシミュレーションに基づいてトレーニングされ、直接比較される。
生成モデルは、高次元のカロリーメーターデータセットを正確に生成することが示されている新しい生成モデルのクラスである。
論文 参考訳(メタデータ) (2023-07-10T08:20:45Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Generalizing to new geometries with Geometry-Aware Autoregressive Models
(GAAMs) for fast calorimeter simulation [6.099458999905677]
生成モデルはより高速なサンプル生産を提供することができるが、現在は特定の検出器測地の性能を最適化するためにかなりの努力が必要である。
我々は,温度計の応答が幾何によってどのように変化するかを学習する自動回帰モデルを開発した。
幾何認識モデルは、いくつかの指標で50ドル以上もするベースライン無意識モデルより優れている。
論文 参考訳(メタデータ) (2023-05-19T08:54:49Z) - CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter
Simulation [0.0]
高粒度検出器における粒子のシャワーのシミュレーションは、粒子物理学への機械学習の適用における重要なフロンティアである。
この研究は、初めて数千の空間点の点雲を3次元空間の検出器で直接生成し、固定格子構造に頼ることなく大きなブレークスルーを成し遂げた。
論文 参考訳(メタデータ) (2023-05-08T16:44:15Z) - Geometry-aware Autoregressive Models for Calorimeter Shower Simulations [6.01665219244256]
本研究では, 幾何線量に基づく幾何学的自己回帰モデルを構築した。
これは、新しい目に見えないカロリーメーターに一般化できるモデルを構築するための、概念実証の重要なステップである。
このようなモデルは、大型ハドロン衝突型加速器実験において、カロリーメータシミュレーションに使用される数百の生成モデルを置き換えることができる。
論文 参考訳(メタデータ) (2022-12-16T01:45:17Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。