A Bayesian Approach to Reconstructing Interdependent Infrastructure
Networks from Cascading Failures
- URL: http://arxiv.org/abs/2211.15590v1
- Date: Mon, 28 Nov 2022 17:45:41 GMT
- Title: A Bayesian Approach to Reconstructing Interdependent Infrastructure
Networks from Cascading Failures
- Authors: Yu Wang, Jin-Zhu Yu, Hiba Baroud
- Abstract summary: Understanding network interdependencies is crucial to anticipate cascading failures and plan for disruptions.
Data on the topology of individual networks are often publicly unavailable due to privacy and security concerns.
We propose a scalable nonparametric Bayesian approach to reconstruct the topology of interdependent infrastructure networks.
- Score: 2.9364290037516496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analyzing the behavior of complex interdependent networks requires complete
information about the network topology and the interdependent links across
networks. For many applications such as critical infrastructure systems,
understanding network interdependencies is crucial to anticipate cascading
failures and plan for disruptions. However, data on the topology of individual
networks are often publicly unavailable due to privacy and security concerns.
Additionally, interdependent links are often only revealed in the aftermath of
a disruption as a result of cascading failures. We propose a scalable
nonparametric Bayesian approach to reconstruct the topology of interdependent
infrastructure networks from observations of cascading failures.
Metropolis-Hastings algorithm coupled with the infrastructure-dependent
proposal are employed to increase the efficiency of sampling possible graphs.
Results of reconstructing a synthetic system of interdependent infrastructure
networks demonstrate that the proposed approach outperforms existing methods in
both accuracy and computational time. We further apply this approach to
reconstruct the topology of one synthetic and two real-world systems of
interdependent infrastructure networks, including gas-power-water networks in
Shelby County, TN, USA, and an interdependent system of power-water networks in
Italy, to demonstrate the general applicability of the approach.
Related papers
- TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics [14.25304439234864]
We introduce a novel resilience prediction framework for complex networks, designed to tackle this issue through generative data augmentation of network topology and dynamics.
Experiment results on three network datasets demonstrate that our proposed framework TDNetGen can achieve high prediction accuracy up to 85%-95%.
arXiv Detail & Related papers (2024-08-19T09:20:31Z) - Inferring Dynamic Networks from Marginals with Iterative Proportional Fitting [57.487936697747024]
A common network inference problem, arising from real-world data constraints, is how to infer a dynamic network from its time-aggregated adjacency matrix.
We introduce a principled algorithm that guarantees IPF converges under minimal changes to the network structure.
arXiv Detail & Related papers (2024-02-28T20:24:56Z) - Localizing Anomalies in Critical Infrastructure using Model-Based Drift
Explanations [5.319765271848658]
We analyze the effects of anomalies on the dynamics of critical infrastructure systems by modeling the networks employing Bayesian networks.
In particular, we argue that model-based explanations of concept drift are a promising tool for localizing anomalies.
To showcase that our methodology applies to critical infrastructure more generally, we showcase the suitability of the derived technique to localize sensor faults in power systems.
arXiv Detail & Related papers (2023-10-24T13:33:19Z) - DANI: Fast Diffusion Aware Network Inference with Preserving Topological
Structure Property [2.8948274245812327]
We propose a novel method called DANI to infer the underlying network while preserving its structural properties.
DANI has higher accuracy and lower run time while maintaining structural properties, including modular structure, degree distribution, connected components, density, and clustering coefficients.
arXiv Detail & Related papers (2023-10-02T23:23:00Z) - Detecting Vulnerable Nodes in Urban Infrastructure Interdependent
Network [30.78792992230233]
We model the interdependent network as a heterogeneous graph and propose a system based on graph neural network with reinforcement learning.
The presented system leverages deep learning techniques to understand and analyze the heterogeneous graph, which enables us to capture the risk of cascade failure and discover vulnerable infrastructures of cities.
arXiv Detail & Related papers (2023-07-19T09:53:56Z) - IIVA: A Simulation Based Generalized Framework for Interdependent
Infrastructure Vulnerability Assessment [0.0]
This paper proposes a novel infrastructure vulnerability assessment framework that accounts for: various types of infrastructure interdependencies.
It is observed that higher the initial failure rate of the components, higher is the vulnerability of the infrastructure.
arXiv Detail & Related papers (2022-12-13T20:37:03Z) - Towards Understanding Theoretical Advantages of Complex-Reaction
Networks [77.34726150561087]
We show that a class of functions can be approximated by a complex-reaction network using the number of parameters.
For empirical risk minimization, our theoretical result shows that the critical point set of complex-reaction networks is a proper subset of that of real-valued networks.
arXiv Detail & Related papers (2021-08-15T10:13:49Z) - On Topology Optimization and Routing in Integrated Access and Backhaul
Networks: A Genetic Algorithm-based Approach [70.85399600288737]
We study the problem of topology optimization and routing in IAB networks.
We develop efficient genetic algorithm-based schemes for both IAB node placement and non-IAB backhaul link distribution.
We discuss the main challenges for enabling mesh-based IAB networks.
arXiv Detail & Related papers (2021-02-14T21:52:05Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
We study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection.
We also check the performance impact of network prunings as an ancillary tactic to make hierarchical community detection more efficient.
arXiv Detail & Related papers (2020-09-15T00:16:12Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Detecting Communities in Heterogeneous Multi-Relational Networks:A
Message Passing based Approach [89.19237792558687]
Community is a common characteristic of networks including social networks, biological networks, computer and information networks.
We propose an efficient message passing based algorithm to simultaneously detect communities for all homogeneous networks.
arXiv Detail & Related papers (2020-04-06T17:36:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.