論文の概要: Connecting the Dots: Floorplan Reconstruction Using Two-Level Queries
- arxiv url: http://arxiv.org/abs/2211.15658v1
- Date: Mon, 28 Nov 2022 18:59:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 19:07:24.867021
- Title: Connecting the Dots: Floorplan Reconstruction Using Two-Level Queries
- Title(参考訳): ドット接続:2レベルクエリを用いたフロアプラン再構築
- Authors: Yuanwen Yue, Theodora Kontogianni, Konrad Schindler, Francis Engelmann
- Abstract要約: 本稿では,複数の部屋の多角形を並列に生成するトランスフォーマーアーキテクチャを提案する。
提案手法は,Structured3DとSceneCADの2つの挑戦的データセットに対して,新たな最先端化を実現する。
追加情報、すなわちセマンティックルームタイプやドアや窓のようなアーキテクチャ要素を予測するために簡単に拡張できる。
- 参考スコア(独自算出の注目度): 27.564355569013706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address 2D floorplan reconstruction from 3D scans. Existing approaches
typically employ heuristically designed multi-stage pipelines. Instead, we
formulate floorplan reconstruction as a single-stage structured prediction
task: find a variable-size set of polygons, which in turn are variable-length
sequences of ordered vertices. To solve it we develop a novel Transformer
architecture that generates polygons of multiple rooms in parallel, in a
holistic manner without hand-crafted intermediate stages. The model features
two-level queries for polygons and corners, and includes polygon matching to
make the network end-to-end trainable. Our method achieves a new
state-of-the-art for two challenging datasets, Structured3D and SceneCAD, along
with significantly faster inference than previous methods. Moreover, it can
readily be extended to predict additional information, i.e., semantic room
types and architectural elements like doors and windows. Our code and models
will be available at: https://github.com/ywyue/RoomFormer.
- Abstract(参考訳): 3次元スキャンによる2次元フロアプラン再構成について述べる。
既存のアプローチは通常、ヒューリスティックに設計されたマルチステージパイプラインを使用する。
代わりに、フロアプラン再構築を単一段階構造予測タスクとして定式化し、可変サイズの多角形の集合を見つけ、これは順序付けられた頂点の可変長列である。
そこで本研究では,複数の部屋の多角形を並列に,手作り中間段を使わずに総合的に生成する新しい変圧器アーキテクチャを開発した。
モデルには、多角形と角形の2レベルクエリと、ネットワークをエンドツーエンドでトレーニング可能にする多角形マッチングが含まれている。
提案手法は,Structured3DとSceneCADという2つの挑戦的データセットに対して,従来の手法よりもはるかに高速な推論を実現する。
さらに、セマンティックルームタイプやドアや窓のようなアーキテクチャ要素などの追加情報を予測するために簡単に拡張できる。
私たちのコードとモデルは、https://github.com/ywyue/RoomFormer.comで利用可能になります。
関連論文リスト
- PolyRoom: Room-aware Transformer for Floorplan Reconstruction [17.154556344393743]
点群からフロアプランを再構築する部屋対応トランスであるPolyRoomを提案する。
具体的には、トレーニング中の密集的な監視と角度情報の有効活用を可能にするため、一様サンプリングフロアプラン表現を採用する。
2つの広く使用されているデータセットの結果は、PolyRoomが現在の最先端の手法を量的にも質的にも上回っていることを示している。
論文 参考訳(メタデータ) (2024-07-15T04:53:10Z) - ConDaFormer: Disassembled Transformer with Local Structure Enhancement
for 3D Point Cloud Understanding [105.98609765389895]
トランスフォーマーは、最近3Dポイントクラウド理解のために研究されている。
0.1万を超える多数のポイントは、ポイントクラウドデータに対してグローバルな自己注意を可能にする。
本稿では,ConDaFormerという新しい変圧器ブロックを開発する。
論文 参考訳(メタデータ) (2023-12-18T11:19:45Z) - HiT: Building Mapping with Hierarchical Transformers [43.31497052507252]
階層変換器を用いた簡易かつ斬新な建物マッピング手法HiTを提案する。
HiTは、分類とバウンディングボックス回帰ヘッドに平行なポリゴンヘッドを追加することによって、2段階検出アーキテクチャの上に構築される。
本手法は, 最先端手法と比較して, 事例分割と多角形メトリクスの両面において, 新たな最先端化を実現している。
論文 参考訳(メタデータ) (2023-09-18T10:24:25Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - MCTS with Refinement for Proposals Selection Games in Scene
Understanding [32.92475660892122]
本稿では,モンテカルロ木探索(MCTS)アルゴリズムを適用したシーン理解問題に適用可能な新しい手法を提案する。
提案手法は,提案された提案のプールから,目的語を最大化する提案を共同で選択し,最適化する。
本手法は,部屋配置に厳しい制約を加えることなく,Matterport3Dデータセット上で高い性能を示す。
論文 参考訳(メタデータ) (2022-07-07T10:15:54Z) - Neural Template: Topology-aware Reconstruction and Disentangled
Generation of 3D Meshes [52.038346313823524]
本稿では,Distangled Topologyによる3次元メッシュ再構成と生成のためのDTNetという新しいフレームワークを提案する。
提案手法は,最先端の手法と比較して,特に多様なトポロジで高品質なメッシュを生成することができる。
論文 参考訳(メタデータ) (2022-06-10T08:32:57Z) - Neural 3D Scene Reconstruction with the Manhattan-world Assumption [58.90559966227361]
本稿では,多視点画像から3次元屋内シーンを再構築する課題について述べる。
平面的制約は、最近の暗黙の神経表現に基づく再構成手法に便利に組み込むことができる。
提案手法は, 従来の手法よりも3次元再構成品質に優れていた。
論文 参考訳(メタデータ) (2022-05-05T17:59:55Z) - A Scalable Combinatorial Solver for Elastic Geometrically Consistent 3D
Shape Matching [69.14632473279651]
本稿では,3次元形状間の幾何学的一貫したマッピング空間をグローバルに最適化するスケーラブルなアルゴリズムを提案する。
従来の解法よりも数桁高速なラグランジュ双対問題と結合した新しい原始問題を提案する。
論文 参考訳(メタデータ) (2022-04-27T09:47:47Z) - Automated LoD-2 Model Reconstruction from Very-HighResolution
Satellite-derived Digital Surface Model and Orthophoto [1.2691047660244335]
本稿では,LoD-2ビルディングモデルを「分解最適化最適化」パラダイムに従って再構成するモデル駆動手法を提案する。
提案手法は,既存の手法に対するいくつかの技術的問題点に対処し,その有効性を実証した。
論文 参考訳(メタデータ) (2021-09-08T19:03:09Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) は連続的な出力を提供し、複数のトポロジを扱える。
IF-NetsはShapeNetにおける3次元オブジェクト再構成における先行作業よりも明らかに優れており、より正確な3次元人間の再構成が得られる。
論文 参考訳(メタデータ) (2020-03-03T11:14:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。